Образный анализ ритма ЭКГ

Страница: 1/3

ОБРАЗНЫЙ АНАЛИЗ РИТМА ЭКГ

Т. А. Ракчеева

Институт проблем передачи информации РАН, Москва

Журнал "Медицинская техника" N 2, 1995 C.9-16

Автоматическая диагностика нарушений ритма сердечной


деятельности является традиционной задачей медицинской

кибернетики. К настоящему времени в этой области накоплен значительный опыт, который свидетельствует, в частности, о несостоятельности на сегодняшний день попыток полной автоматизации диагностики ритма сердца. Решение задачи базируется в основном на врачебном опыте, с одной стороны, и на статистической обработке ­с другой. Однако, как известно, врачебный опыт далек от необходимой формализации, точнее, формализации поддается некоторая часть устойчивых знаний, разделяемых большинством специалистов, в то время как другая часть врачебного опыта носит нечеткий и субъективный характер, который часто неотделим от самого

специалиста. Статистический же подход носит слишком абстрактный характер, мало учитывая специфику задачи. Поэтому большинство существующих автоматизированных систем или не обладает достаточной степенью убедительности, или является малоэффективными, охватывая лишь небольшой круг патологий.

В своей профессиональной деятельности специалист всегда опережает возможности автоматической системы, поэтому целесообразным представляется создание полуавтоматических систем, предполагающих участие специалиста в принятии решения. Основу автоматической обработки должны составлять знания, поддающиеся общепринятой формализации, а образующуюся при этом ограниченность круга диагностируемых патологий можно компенсировать некоторым образным представлением обрабатываемых данных, облегчающим уточнение диагноза специалисту, взаимодействующему с ЭВМ в интерактивном режиме. Такая тенденция наблюдается в разных

областях научной деятельности [1, 2, 4, 6].

Образное представление ритмической структуры ЭКГ является особенно актуальным из-за большого объема обрабатываемой

информации, который трудно полностью охватить. В связи с этим давно делаются попытки подобного представления. Примером такого подхода могут служить широко известные ритмограммы:

интервалограммы, скаттерграммы, спектрограммы и др., однако они не учитывают ритма предсердий и носят скорее статистический характер, что затрудняет их детальную интерпретацию (3, 5].

В данной работе предложен ряд способов образного анализа ритма ЭКГ. Основным элементом любого анализа ритмической структуры ЭКГ является сопоставление между собой различных импульсов, циклов, фрагментов. Желание использовать графические возможности компьютера для более эффективного осуществления подобных операций легло в основу предлагаемого ниже комплекса моделей образного анализа ритма сердца, называемых в данной работе также

ритмограммами. Данный подход ориентирован на выявление периодических свойств ЭКГ и характера взаимодействия импульсов Р и R. Предложенные методы реализованы в виде программной системы для ЭВМ IBM РС, с помощью которой получен приведенный в работе иллюстративный материал. Входной информацией системы может служить как сама исходная электрокардиограмма, так и различные ее характеристики, главным образом моменты регистрации импульсов и временные соотношения, связывающие эти импульсы.

При рассмотрении предлагаемых ритмограмм удобно иметь в виду


наряду с реальной и некоторую условную ЭКГ, содержащую только информацию о ритмической структуре ЭКГ, изображение которой представимо в виде временной оси с отмеченными на ней моментами появления импульсов Р и R (на экране дисплея для этого может быть использована цветовая или иная символика). Приведенные рисунки сделаны с экрана цветного дисплея, в связи с чем утраченная цветовая информация частично восполнена обозначениями разных

символов.

Один из возможных способов пространственного представления ЭКГ с целью анализа ритма состоит в том, чтобы "свернуть" ее в кольцо некоторого диаметра или во избежание потери информации в плоскую спираль с небольшим шагом по радиусу. Такое представление может быть использовано как для условной, так и для реальной ЭКГ. Если при этом выбрать начальный радиус обращения спирали

достаточно большим, а шаг достаточно малым, то приращением длины витка можно пренебречь, считая все витки спирали одинаковой длины. В таком случае ритмически правильная ЭКГ будет представлена спиралью с расположением одноименных зубцов по своим радиусам, в то время как патологическая ЭКГ будет иметь позиции зубцов, распределенные по длине спирали с той или иной регулярностью уже второго по отношению к циклам ЭКГ уровня (рис. 1).

На рис. 1, а приведена ритмограмма ЭКГ, нормальный ритм которой время от времени нарушается; экстрасистолия, определяющая характер этих нарушений, проявляется на такой ритмограмме в форме, легко интерпретируемой специалистом. Жирной линией на спирали выделены интервалы Р - R; лучами отмечены диапазоны разброса параметров ЭКГ, не выводящие ее за пределы нормы. В верхней части экрана для этой и других ритмограмм изображается в уменьшенном масштабе движущаяся исходная ЭКГ (в данном случае модельная,

генерируемая имитатором ритмических патологий).

Спиральная ритмограмма является управляемой. Меняя по желанию оператора радиус спирали, можно настраивать ритмограмму на определенный цикл данной ЭКГ. Такая настройка предназначена для определения периода основного ритма с возможной переориентацией на любой из двух - предсердный или желудочковый - ритмов с целью получения более наглядного представления. На рис. 1, б, в

представлены примеры спиральной ритмограммы с настройкой на разные значения цикловой периодики ЭКГ. Из-за неправильного выбора параметра настройки, ориентированного на первый цикл, ритмограмма, приведенная на рис. 1, б, никакой закономерности не выявляет. Правильная же настройка ритмограммы для той же ЭКГ выявляет характер ее ритмической структуры, состоящий в данном случае в наложении двух нарушений: тахикардии и наличии выскальзывающих импульсов (см. рис. 1, в).

Подчеркнем еще раз, что спиральная ритмограмма может работать не только с условной, но и с реальной ЭКГ. При этом значения потенциала ЭКГ квантуются и изображаются различными цветами или различными градациями яркости при использовании черно-белого дисплея. В этом случае не требуется решение сложной задачи идентификации зубцов.

Таким образом, спиральная ритмограмма нацелена на отделение диагностически неинформативной естественной цикличности, выявляя характер отклонения от нее. Вместе с тем сами эти отклонения могут формировать периодичность более высоких уровней, связанных с повторяемостью групп циклов полностью или по отдельным характеристикам. В этом случае спиральную ритмограмму можно настроить на такую группу циклов, осуществляя тем самым поиск макропериода ЭКГ (сходство ритмических рисунков больших фрагментов ЭКГ), значение которого само по себе является одним из основных диагностических параметров.

Следующая ритмограмма (веерная, рис. 2), также основанная на круговой развертке, специально ориентирована на решение такой задачи. Параллельно с прослеживанием временной последовательности отсчетов ЭКГ эта ритмограмма вычерчивает веерообразно петли (лепестки), исходящие из некоторого центра и возвращающиеся в этот

центр. Величина лепестка соответствует текущему межпредсердному интервалу Р - Р. Импульсы желудочков, расположенные между двумя импульсами предсердий, порождают свои петли Р - R внутри петли Р ­Р. Количество петель Р - Р, разворачивающихся веером на угловом интервале (0,2), определяется параметром внутренней макропериодики ЭКГ.

Все циклы идеально нормальной ЭКГ в веерной ритмограмме повторяют друг друга и для всех циклов ритмограмма проходит по траектории первого цикла, поэтому параметр периодики в данном случае может быть любым, достаточно единичного. В случае

патологической ЭКГ, соответствующей, например, регулярной

экстрасистологии, где в каждом третьем цикле появляется

дополнительный импульс R, ритмограмма состоит из трех лепестков (К = 3), два из которых относятся к нормальным циклам, а третий - к патологическому, содержащему лишнюю петлю Р - R.

Управление веерной ритмограммой состоит в манипулировании параметром периодики К, что означает перестройку ее на разное число лепестков развертки. В качестве примера можно привести ЭКГ с нарушениями в виде неполной атриовентрикулярной блокады, состоящей в том, что периодически в течение нескольких циклов интервал Р - R увеличивается, пока не исчезнет совсем. В данном случае этот макропериод состоит из пяти циклов, поэтому настройка на любую периодику, не кратную пяти, дает смещение траектории от оборота к обороту (см. рис. 2, а) и лишь при правильной настройке после одного оборота развертки лепестков на плоскости траектория

стабилизируется (см. рис. 2, б).

Устроенная описанным способом веерная ритмограмма информационно эквивалентна такой интервалограмме, где изобразительными элементами, характеризующими отдельные циклы, являются отрезки, равные по величине соответствующим интервалам Р - Р и Р - R. Однако непосредственно такое представление было бы недостаточно наглядным, так как необходимость изобразить на одном отрезке интервала Р - Р еще в общем случае несколько интервалов Р - R приводило бы к слиянию этих отметок при наложении циклов друг на друга.

Периодическая структура ЭКГ может быть сложной, вследствие чего для ее исследования может потребоваться многоуровневый иерархический анализ, в котором определение макропериода происходит на верхнем уровне. Такую схему реализует описываемая ниже матричная ритмограмма (рис. 3).

Реферат опубликован: 23/05/2005 (4673 прочтено)