Клонирование и анализ генов легких цепей иммуноглобулинов стерляди

Страница: 7/8

A

AruIgLBV QYTVTQTPAEKSVLPGDTVALNCKVNSAVLGNTYLHWYQQKPGEAPKLLIY*RASTLESGIPTRFSGSG**SGTDFTLTISGVQAEDEGDYYCVSV

IpuIgLVG -V-------V--A---E--TI--RT-P-Y*-H*-----------------K*F-NQ-H----A------**--S----------T--A-----Q-Y 71%

OmyIgLV1 -I------EM-AFQT--A-T-R-RF-KPSPPC**VA-------G--Q----*Y-T--Q--T-S------**--S-------------A-----Q-Y 63%

XIaIgLVR -VVL--S-DYV--S--E--TIT--AS-SS---**-------S-QT------*GT-NRYT-T-E------**----------RME---AA----QQY 58%

Rabbit kV IV ivm----ss---pv----ti--qasqs-ys-nr-a-f-----qp------*k----a--v-s--k---**---q------d--ca-aat---rva 57%

GciIgLVIII -M--S-PVL--GL-Q--TIT-TASQS-YS-**-A----RE-QK-S----*A-TNRYTEVSE------**---S-----RN--P--VA----QGT 48%

HulV2 -SAL--*-ASV-GS--QSITIS-TGT-SSYNL**VS----H--K----M--*EG-KRP--VSN-----K**--NTAS--T--L-----A----C-Y 47%

HfrIgLVII GTVL--*--SM-TSQ-K--KIT-TISGGGTYY**SS--W----S--VFVWRDYD--RG----D--T--RNT-SNVMH---TD--SR-TA-----AW 41%

XlaIgLIII -VSI--*-VSE--KL-E--RIS-TLSG-SGYH**VN-----A-NR-RY-LRFYSDSNK**HQD-----KDSPNNIGY---K-ALL--DA----ATW 35%

HfrIgLV1 VPVLN---ISDP-SA-E-SE-K-AMQNGGSYY**MS--R-R-----VFVL**YQ--SG-IYRD--KP-RDT-SNSHI---GSLEPG-SAV---AAN 31%

Б

AruIgLCB GSPTAPSSVSLLPPSKLELDSKGKATLVCLVNNFYPDVVDIKWTVDGVAQSSG*VLTSTMKQK**DGKYSASSSLTLTKAVWNSKETYTCTVKHEAVSTPRSESIKRSECTLLDA

CplIgLCII -RS*PT--V----SDQITA-NM-------SG-V-GAAE-E-----SVRGN-*-E--RIQ-EA*-NTF-V--Y---SASD---H-L-S-V-K-ETQAN-LQT--S--S-M 44%

HfrIgLCIII EKSQPTLT-M---PE-VKA--T------ADH----E-GVE-KK--A-I-A-*-Q--NYLRAS*-ST--C--L---SGSD-E-NARFS-ALT-ETL-S-L-K-VS----V 42%

IpuIgLCF G--VKP-----L--S-Q-S*E-S-S-L--LPAYS-QGALVS-----SEVKD-*----AEER-**TDG-TR--T---S--L-EKG-EFV-K-S-DN-DH-VT**FRK-Q-EV 41%

Hu kappa TV-AP-VFIF---*D-QLKS-T-SV---L-----REAKVQ-K--NAL--GN*SQE-VTE-DSK-ST--L--T---S--DYEKHKV-A-E-T-QGL-S-VTK-FN-G-- 39%

XlaIgLC3 GDVK--*---YF---*V-EIATK---V--SLSD-T-RGATVK-L---KD-TDS*-QS-GLSKQS*-NL-ME--Y-S--ADQ-LRH---S-K-S-Q**GKEIIQTL-----V 38%

Hu lambda1 Q-K-NPT-T-F---*S-ELQAN-------ISD---GA-TVA-KA--SPVKA-*-E-TKPSKQS*NN--A---Y-S--PEQ-K-HRS-S-Q-T-E**GSTVEKTVAPT--S 37%

HfrIgLCI SEDRKP-VL-----*S-EIDS-W---S---SR-K-GF-RVL-R--DKETD--*-T-G-VSTDS*-QS--L--YLRVPATA--KGSS---S-D-GSL-S-LLKT-SSTA-SD 37%

XlaIgLCS ND-KPA-FIFK--*D-QVKE-NP-A---I---F-RDLTVT-K--SQDV--SD-K--DFM-ES*-ST--Q--M-T---DK-DKADKFE-L-K-K**TAQLTQSFSK-Q-S 34%

IpuIgLCG LTQP--TV----SV--Q*QE-V-----AYKGF-SDWRLS-K---SSW---*ESR-SAVLQA*--L--W--T-S-HPEQ-RN-*VV--EASKDN*QP-VVSTVNTEQ- 33%

Рис. 12. Сравнение аминокислотных последовательностей V (А) и С (Б) областей L-цепи ИГ стерляди с последовательностями других видов позвоночных. Дефис обозначает идентичность в данной позиции. Звездочка обозначает делецию аминокислотных остатков. Слева указаны проценты сходства. Видовые обозначения: Aru - стерлядь, Ipu - пещерный сомик, Omy - радужная форель, Xla - шпорцевая лагушка, Gci - акула-нянька, Hu - человек, Cpl - песчаная акула, Hfr - разнозубая акула.


Рис. 13. Саузерн блот гибридизация. Геномная ДНК была выделена из печени и обработана эндонуклеазами рестрикции Pst I Pvu II. Гибридизацию проводили в мягких условиях с использованием зондов, гомологичных VL (а) и CL (б) генным сегментам L-цепей ИГ стерляди. С V-зондом гибридизовалось более 20 фрагментов ДНК, в то время как с С-зондом гибридизовалось только 3-4 фрагмента.


ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате проведенной работы идентифицирован локус генов, кодирующих L-цепи ИГ стерляди, представителя подкласса костно-хрящевых рыб. Сравнительный анализ структуры V генов этого локуса указывает, что он относится к каппа типу. Результаты сравнительного анализа С областей менее информативны, что само по себе не удивительно, так как С-гены L-цепей ИГ значительно менее консервативны чем V-гены. Тем не менее, тот факт, что на нуклеотидном уровне С-ген стерляди имеет наибольшее сходство с каппа-подобными генами III класса хрящевых рыб, также свидетельствует о том, что обнаруженный локус относится к каппа типу.

кДНК клонов В1, С2, Е4, а также фрагмент, полученный с помощью ПЦР, содержат близкородственные V-гены. Различия между ними сконцентрированы в основном в области 3-го гипервариабельного района. Последовательности двух обнаруженных J-сегментов отличаются по 10 нуклеотидам, т.е., они представляют собой различные геномные сегменты. Незначительные различия обнаружены также между тремя последовательностями С-генов. С-сегмент клона В1 отличается от полного С-сегмента клона С2 по 9 позициям, из которых 5 ведут к замене аминокислоты. По-видимому, эти последовательсти также представляют собой разные зародышевые гены.

Анализ структурной организации локуса с помощью Саузерн блот-гибридизации указывает, что у стерляди имеются множественные VL гены. Точная оценка их количества невозможна, но наличие более 20 полос гибридизации с разной интенсивностью сигнала, по аналогии с многочисленными литературными данными, позволяет говорить о нескольких десятках копий.

При использовании С-зонда количество полос в мягких условиях гибридизации не превышает 4-х. Учитывая возможность аллелизма можно говорить о наличии в этом локусе 2-4х генов.

Ярко выраженное количественное превосходство V генов над С-генами является характерным признаком сегментарной формы организации локуса. У хрящевых и костистых рыб с кластерной организацией генов L-цепей количество V и С генов очень велико и приблизительно одинаково, что отражается в сходной картине блот-гибридизации. Полученные нами результаты являются серьезным основанием для того, чтобы утверждать, что у стерляди организация генов L-цепей каппа-подобного типа имеет сегментарный характер, подобный организации каппа локуса млекопитающих.

Эти данные указывают на то, что переход от кластерной к сегментарной организации произошел в филогенезе позвоночных очень рано, возможно уже у древних первично-костных.


ВЫВОДЫ

1. Сконструирована библиотека кДНК лейкоцитов стерляди представительностью 6х106 независимых клонов. ПЦР ДНК библиотеки с помощью вырожденного праймера, соотвествующего J сегменту генов ИГ, позволил выявить фрагмент ДНК длиной 370 пн, гомологичный V генам ИГ позвоночных.

2. Из библиотеки кДНК с использованием продукта ПЦР в качестве зонда выделено пять клонов, содержащих вставки кДНК генов L-цепей ИГ. Сравнительный анализ первичной структуры кДНК клонов показал, что они являются членами одного семейства генов и имеют наибольшее сходство с генами каппа типа.

3. Согласно результам геномного блот-анализа идентифицированное семейство содержит несколько десятков V генов и только 2-4 С гена, что указывает на сегментарную форму его организации.

4. Полученные данные указывают что переход от кластерного типа организации генов ИГ, характерного для хрящевых рыб, к сегментарному, присутствующему у всех млекопитающих, произошел в эволюции в период появления первично-костных рыб.


СПИСОК ЛИТЕРАТУРЫ

Мазин А. В., Кузнеделов К. Д. и др. Методы молекулярной генетики и генной инженерии. Новосибирск, 1988. 333 с.

Маниатис Т., Фрич Э., Сэмбрук Д. Молекулярное клонирование. М.: Мир, 1984. 480 с.

Пол У. (ред.) Иммунология. М.: Мир, 1987. Т. 1. 476 с.

Ромер А. С. и Парсонс Т. С. Анатомия позвоночных. М.: Мир, 1992. 358 с.

Фримель Г. (ред.) Иммунологические методы. М.: Медицина, 1987. 472 с.

Юдкин И. И. Ихтиология. Москва-Ленинград: Пищепромиздат, 1941.

Aguilera R. J., Akira S., Okazaki K.,Sakano H. A pre-B cell nuclear protein wich specifically interacts with the immunoglobulin V-J recombination sequeces // Cell. 1987. V. 51. P. 909-917.

Anderson M. K., Shamblott M. J., Litman R. T., Litman G. W. Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity // Journal of Experimental Medecine. 1995. V. 182. P. 109-119.

Bengten E. The immunoglobulin genes in Atlantic cod (Gadus morhuna) and rainbow trout (Oncorhynchus mykiss) // Dissertations from the Faculty of Science and Technology. 1994. V. 19.

Bengten E., Leanderson T., Pilstrom L. Immunoglobulin heavy chain cDNA from Atlantic cod (Gadus morhuna L.): nucleotide sequences of secretory and membrane form show an unusual splicing pattern // European Journal of Immunology. 1991. V. 21. P. 3027-3033.

Blomberg B., Tonegawa S. DNA sequences of the joining regions of mouse l light chain immunoglobulin genes // Proc. Natl. Acad. Sci. USA. 1982. V. 79. P. 530.

Boyle J. S., Lew A. M. An inexpensive alternative to glassmilk for DNA purification // Trends in Genetics. 1995. V. 11. No. 1. p. 8.

Chomczynski P. and Sacchi N. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction // Analytical biochemistry. 1987. V. 162. P. 156-159.

Daggfeldt A., Bengten E., Pilstrom L. A claster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhuna L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis // Immunogenetics. 1993. V.38. P. 199-209.

Dieffenbach C. W. and Dveksler G. S. (edit). PCR primer. A laboratory manual. New York: Cold Spring Harbor Laboratory Press, 1995. 714 p.

Durdik J., Moore M. W., Selsing E. Novel k light-chain gene rearrangements in mouse l light-chain-producing B limphocytes // Nature. 1984. V. 307. P. 749-752.

Реферат опубликован: 18/04/2005 (15804 прочтено)