Организм как саморегулирующаяся система

Страница: 2/3

Эффект обратной связи всегда запаздывает, т.к. она включает компенсационный режим уже после того как произошло рассогласование. Поэтому в центральном аппарате управления системы регуляции обычно заложен еще один механизм контроля, позволяющий получать информацию не об уже полученных параметрах деятельности, а осуществляющий сравнение сигналов, посылаемых к исполнительным устройствам, с сигналами, требуемыми для заданной программы. Этот механизм контроля свойственен третьему уровню системы регуляции и осуществляется центральной нервной системой.

По конечному эффекту регуляции обратная связь может быть положительной и отрицательной.

Положительная обратная связь означает, что выходной сигнал системы регуляции усиливает входной, активация какой-либо функции вызывает усиление механизмов регуляции еще больше ее активирующих. Такая обратная связь усиливает процессы жизнедеятельности. Например, прием пищи и поступление ее 'в желудок усиливают отделение желудочного сока, необходимого для гидролиза веществ. Появляющиеся в желудке и частично всасывающиеся в кровь продукты гидролиза в свою очередь стимулируют сокоотделение, что ускоряет и усиливает дальнейшее переваривание пищи. Однако положительная обратная связь часто приводит систему в неустойчивое состояние, способствует формированию "порочных кругов", лежащих в основе многих патологических процессов в организме.

Отрицательная обратная связь означает, что выходной сигнал уменьшает входной, активация какой-либо функции подавляет механизмы регуляции, усиливающие эту функцию. Отрицательные обратные связи способствуют сохранению устойчивого, стационарного состояния системы. Благодаря им, возникающее отклонение регулируемого параметра уменьшается и система возвращается к первоначальному состоянию. Например, под влиянием паратирина (гормона околощитовидных желез) в крови возрастает содержание ионизированного кальция. Повышенный уровень катиона тормозит секрецию паратирина, усиливает поступление в кровь кальцитонина (гормона щитовидной железы), под влиянием которого уровень кальция снижается и его содержание в крови нормализуется.

Отрицательные обратные связи способствуют сохранению стабильности физиологических параметров внутренней среды при возмущающих воздействиях внешней среды, т.е. поддерживают гомеостазис. Они работают и в обратном направлении, т.е. при уменьшении параметров включают системы регуляции повышающие их и тем самым обеспечивающие восстановление гомеостазиса.

Описанные особенности регуляции жизнедеятельности способствуют надежности живых систем.

Надежностью биологической системы называют её способность сохранять целостность и выполнять свойственные ей функции в течение определенного времени, составляющего, как правило, продолжительность жизни. Свойство надежности обеспечивается рядом принципов:

1) принцип избыточности — обусловлен наличием большего, чем требуется для реализации функции числа элементов, например, множества нервных клеток и связей между ними (структурная избыточность), множества каналов передачи информации, излишнего ее объема (информационная избыточность) и т.п.;

2) принцип резервирования функции — обеспечивается наличием в системе элементов, способных переходить из состояния покоя к деятельности. Это происходит, например, при необходимости повысить интенсивность функционирования, для чего вовлекаются резервные элементы. Так, при спокойном дыхании функционируют (вентилируются) не все альвеолы легких, а при усилении дыхания включаются резервные; в работающей мышце открываются нефункционирующие в покое капилляры. Приведенный вариант реализации принципа резервирования ведет к увеличению числа функционирующих в системе элементов. Особое значение приобретает наличие резервных элементов при повреждении или отказе части действующих структур. При этом вовлечение резервных элементов обеспечивает сохранение функции;

3) принцип периодичности функционирования обеспечивает переменную структуру системы и в состоянии физиологического покоя. Так, в легких постоянно происходит смена вентилируемых альвеол, в почках — функционирующих нефронов, в мозге — возбуждающихся нервных клеток центра и т.д. Периодичность функционирования "дежурных" и "покоящихся" структур обеспечивает защитную роль состояния покоя для всех элементов постоянно действующей системы;

4) принцип взаимозаменяемости и замещения функций — обеспечивает возможность перестройки функциональных свойств элементов системы, что способствует сохранению функции в условиях отказа или повреждения других элементов. Для центральной нервной системы это проявляется в пластичности мозга, т.е. изменении эффективности и направленности связей между нейронами, способствующей обучению или восстановлению функции после повреждения. Примером замещения функций может являться изменение дыхания, деятельности почек при сдвигах рН крови и недостаточной эффективности буферных систем;

5) принцип дублирования, связан, например, с наличием в организме парных органов (легкие, почки). В системах регулирования этот принцип проявляется не только наличием одинаковых структурных элементов — параллельным расположением в нерве большого числа одинаковых нервных волокон, существованием многочисленных клеток или многоклеточных структур с одинаковой функцией (нейроны в мозге, нефроны в почке, тканевые капилляры). Он также обеспечивает одинаковый эффект разными путями регуляции (симпатический и парасимпатический пути регуляции функций сердца, множество сахаррегулирующих гормонов и т.п.). Многоконтурность в системах регуляции физиологических параметров — один из основных способов реализации дублирования;

6) принцип смещения в ряду сопряженных функций обеспечивает достижение приспособительного результата при нарушении одной из функций за счет активации другой. Например, при нарушении внешнего дыхания и поступления кислорода в кровь активируется образование эритроцитов, изменяются функции кровообращения, вследствие чего доставка кислорода к тканям не страдает;

7) принцип усиления, существующий в системах регуляции, обеспечивает их энергетическую экономичность и в конечном счете также способствует надежности. Для получения мощного ре-гуляторного эффекта совсем не обязательно посылать столь же большое количество сигналов по информационным каналам. Так, весьма небольшое количество молекул гормона может вызвать существенное изменение функции. Изменение лишь одной аминокислоты в детер-минантной группе белка может придать ей чужеродность, а для иммунного ответа необходимо очень малое количество чужеродных молекул.

Надежность биологических систем обеспечивается и способностью к увеличению массы элементов, испытывающих постоянные рабочие нагрузки (гипертрофия), и регенеративными процессами, восстанавливающими структуру при гибели клеток. Для организма в целом важнейшим способом повышения надежности является приспособи-тельное поведение.

Необходимым свойством живой системы, влияющим на эффективность механизмов регуляции, является реактивность. Реактивность — это способность живой системы в большей или меньшей мере, так или иначе отвечать (реагировать) изменениями обмена веществ и функции на раздражители внешней или внутренней среды. Являясь одним из основных свойств, присущих всем уровням организации живой системы, реактивность зависит от функционального состояния реагирующего субстрата. Поэтому характер ответной реакции любой живой системы определяется не только качественными и количественными характеристиками раздражителя, но и реактивностью самой системы. Соответственно, эффекты регуляторных сигналов (нервных импульсов, молекул химических веществ) зависят не только от характеристик этих сигналов, но и от реактивности регулируемого объекта, т.е. эффектора.

Одно из проявлений свойства реактивности получило название правила исходного состояния, согласно которому величина и направленность эффекта регуляторного сигнала зависит от особенностей метаболизма и функции, имевшихся в регулируемой системе перед действием этого сигнала. Сущность этого правила проявляется в следующем. Если функция клетки, ткани, органа или физиологической системы, либо метаболические пути находятся в активированном состоянии, то на стимулирующий регуляторный сигнал отмечается или слабый эффект, или отсутствие эффекта, или даже противоположный эффект, а регулятор подавляющего действия, напротив, вызывает максимально возможный эффект. Если же в исходном состоянии функция или метаболизм снижены, то стимулирующий регулятор вызывает максимальный эффект, а действие подавляющего регулятора ослаблено или даже приводит к стимуляции эффектора.

Механизмы регуляции жизнедеятельности организма принято делить на нервные и гуморальные. Первые используют для передачи и переработки информации структуры нервной системы (нейроны, нервные волокна) и импульсы электрических потенциалов, вторые — внутреннюю среду и молекулы химических веществ.

Нервная регуляция обеспечивает быструю и направленную передачу сигналов, которые в виде нервных импульсов по соответствующим нервным проводникам поступают к определенному адресату —объекту регуляции. Быстрая передача сигналов (до 80-120 м/с) без затухания и потери энергии обусловлена свойствами проводящих возбуждение структур, преимущественно состоянием их мембран. Нервной регуляции подлежат как соматические (деятельность скелетной мускулатуры), так и вегетативные (деятельность внутренних органов) функции. Это универсальное значение нервной регуляции жизнедеятельности и физиологических функций было положено в основу концепции нервизма, рассматривающей целостность организма как результат деятельности нервной системы. Однако абсолютизация этой концепции до теории физиологии не оставляет места для многообразия уровней и связей в системе регуляции жизнедеятельности механизмов интеграции функций. Элементарный и основной принцип нервной регуляции — рефлекс.

Реферат опубликован: 1/06/2005 (9087 прочтено)