Страница: 5/5
Для обеспечения наиболее эффективной экспрессии клонированных генов в векторные молекулы встраивают определенные фрагменты ДНК, позволяющие увеличить выход чужеродного белка. Так, для достижения более высокого уровня экспрессии гена HBsAg в клетках E. coli были использованы различные по силе промоторы (промоторы генов cat, kan, bla, trp и тандемно расположенных промоторов генов kan и trp). Уровни синтеза последовательностей HВsAg (нативного и в составе химерных белков) составляли в зависимости от используемых конструкций векторов от 100 до 100000 молекул на клетку.
1.4. СОЗДАНИЕ ДОСТАТОЧНО УДОБНЫХ И ПО ВОЗМОЖНОСТИ
УНИВЕРСАЛЬНЫХ ВЕКТОРОВ ДЛЯ ЦЕЛЕВОЙ ДОСТАВКИ ГЕНОВ В
КЛЕТКИ И ТКАНИ ОРГАНИЗМА
Важным моментом при конструировании ДНК-вакцин является проблема целенаправленной доставки генов в необходимые клетки и защиты вводимых ДНК от действия нуклеаз крови. В результате экспериментальной работы были созданы разнообразные конструкции, позволяющие доставлять целевые гены в клетки-мишени.
Одной из подобных конструкций является модель молекулярного вектора для доставки генов в такие клетки, как лимфоциты и кераноциты. В качестве модельного был использован ген, кодирующий гибридный белок: фактор некроза опухолей-альфа - интерферон-гамма. В центре вектора находится интактная плазмидная ДНК, содержащая доставляемый ген, а на поверхности располагаются антитела к клеткам-мишеням. Конъюгат полиглюкина со спермидином и антителами применяется для связи компонентов (положительно заряженный спермидин обеспечивает связывание конъюгата с плазмидной ДНК). Описанный молекулярный вектор позволяет целенаправленно доставлять гены в клетки-мишени, сводя до минимума их попадание в другие виды клеток, защищать доставляемые гены от нуклеаз крови и использовать положительно заряженный комплекс спермидин-полиглюкин в качестве стимулятора проникновения ДНК в клетки.
В настоящее время также создана векторная модель для доставки в клетки костного мозга гена, кодирующего гранулоцитарный колониестимулирующий фактор человека (чГ-КСФ). Данный белок относится к семейству гемопоэтических факторов роста и является одним из физиологических регуляторов, специфически и высокоэффективно стимулирующих пролиферацию и дифференцировку гемопоэтических предшественников нейтрофилов. чГ-КСФ увеличивает продолжительность жизни клеток костного мозга, усиливает функциональную активность зрелых нейтрофилов. Созданный вектор представляет собой многослойную конструкцию. "Центральным ядром" конструкции является плазмида pGGF8, содержащая ген чГ-КСФ. Ее окружает полисахаридная оболочка, которая состоит из полиглюкина и спермидина. Внешний белковый слой содержит смесь сывороточного альбумина и белка доставки - трансферина. Эффективность описанной векторной модели была доказана опытным путем.
Итак, при конструировании рекомбинантных противовирусных вакцин немаловажное значение имеет создание специального вектора-носителя, обеспечивающего адресную доставку генов и их защиту от действия нуклеаз крови.
2. ВАКЦИНА ПРОТИВ ЛЕЙКЕМИИ КОШЕК,
ИЗГОТОВЛЕННАЯ С ПОМОЩЬЮ ГЕННОЙ ИНЖЕНЕРИИ
Возбудителем лейкемии кошек является ретровирус типа С. Вирус лейкемии кошек (FeLV) имеет в качестве генетического материала молекулу РНК. Заболеваемость и смертность среди домашних кошек в Швейцарии довольно высока. Вакцина против FeLV, изготовленная традиционным путем, была разработана несколько лет тому назад и находится в продаже в Швейцарии. Высокая цена современных вакцин и отсутствие уверенности в отношении длительности эффекта и надежности вакцины вызвали необходимость создания вакцины с помощью генной инженерии.
При конструировании рекомбинантной вакцины оболочечный протеин вируса (env-ген) клонировался в пивных дрожжах (Saccharomyces cerevisiae). Env-ген вначале лигировался с промотором дрожжей (пируваткиназный промотор), а затем клонировался в так называемом "Shuttle"-векторе. Вектор "Shuttle" (челночный вектор) может размножаться как в бактерии E. coli, так и в пивных дрожжах S. cerevisiae.Он содержит с одной стороны репликационные оригины как для дрожжей, так и для E. coli, а с другой стороны селекционный маркер для дрожжей (leu2 ген) и для E.coli (резистентность к ампицилину). Из литра дрожжевой культуры выделяют множество миллиграмм env-протеина и затем тестируют в опыте по вакцинации. Результат вселяет надежду: 10 кошек были иммунизированы env-протеином, причем 4 дали ответ антителами. Через 2 недели провели заражение FeLV. Теперь все животные давали ответ антителами.
Таким образом, полученная вакцина оказалась эффективным средством для борьбы с данным заболеванием.
СПИСОК ЛИТЕРАТУРЫ
Грен Э. Я., Пумпен П. П. Рекомбинантные вирусные капсиды - новое поколение иммуногенных белков и вакцин // Журнал ВХО. - 1988. - т. II, №5. - с. 531-536.
Дмитриев Б. А. Проблемы и перспективы создания синтетических вакцин // Иммунология. - 1986. - №1. - с. 24-29.
Лебедев Л. Р., Сизов А. А., Масычева В. И., Карпенко Л. И., Рязанкин И. А. Молекулярный вектор для доставки генов в клетки-мишени // Биотехнология. - 2001. - №1. - с. 3-12.
Мертвецов Н. П., Беклемишев А. Б., Савич И. М. Современные подходы к конструированию молекулярных вакцин. - Новосибирск: Наука, 1987, 210 с.
Сизов А. А., Лебедев Л. Р., Масычева В. И., Кашперова Т. А., Одегов А. М. Разработка вирус-подобной конструкции для рецептор-опосредованного транспорта гена чГ-КСФ в клетки костного мозга in vivo // Биотехнология. - 2001. - №1. - с. 13-18.
Шабарова З. А., Богданов А. А., Золотухин А. С. Химические основы генетической инженерии. - М.: Изд-во МГУ, 1994, 224 с.
Щелкунов С. Н. Клонирование генов. - Новосибирск: Наука, 1986, 232 с.
Юров Г. К., Народицкий Б. С., Юров К. П. Конструирование и использование ДНК-вакцин // Ветеринария. - 1998. - №12. - с. 25-27.
Hubscher U. Генная инженерия и ветеринария. Вакцины, изготовленные с помощью генной инженерии, и анализ высоковариабельных участков ДНК. -Schweiz. Arch. Tierheilk., 1987, 129, №11, 553-564.
Реферат опубликован: 15/06/2005 (10658 прочтено)