Страница: 3/5
Рис. 1 Окрестность пикселя X
В работе предлагаются три варианта изменения пикселя, удовлетворяющего вышеуказанным условиям:
Последовательная обработка полутоновых слоёв: последовательное утоньшение каждого полутонового уровня как бинарного изображения от максимального к минимальному.
Одновременная обработка полутоновых слоёв: изменяемый пиксель уменьшается на единицу (рис. 2).
Одновременная обработка с максимизацией значения пикселя: значению изменяемого пикселя присваивается значение максимального соседа из его окружения, полутоновая величина которого не превышает величину изменяемого пикселя.
Способ изменения пикселя зависит от контрастности изображения. Первым способом достигается идеальный результат для любых изображений, но он медленный. Третий способ – быстрый, но результат корректен только для контрастных изображений. Для большинства изображений более эффективно использовать второй способ (рис. 2).
Бинаризация скелета проводится за один проход изображения. Если обрабатываемый пиксель имеет хотя бы одного из четырёх соседей (p0, p2, p4, p6) меньше его или всех диагональных восьмисоседей меньше его, то значение пикселя приравнивается к 1 , в противном случае – к 0:
If (X>p0 OR X>p4 OR X>p2 OR X>P6) OR (X>p1 AND X>p3 AND X>p5 AND X>p7) THEN X=1 ELSE X=0.
Учитывая особенности протяжённых объектов при слабом оптическом увеличении, бинаризированный скелет соответствует выделяемым сосудам или волокнам.
При больших увеличениях толщина протяженных объектов начинает играть существенную роль, поэтому для этого случая был разработан отдельный алгоритм сегментации. Особенность алгоритма заключается в наличии двух параллельных ветвей: обработка самого изображения и его градиента. В результате утоньшения градиента изображения получаются области для обработки, соответствующие либо фону, либо объекту. По соответствию полученного скелета изображения областям определяются протяженные объекты (рис 3).
В качестве развития этого алгоритма предлагается алгоритм идентификации сосудов или волокон, который использует области и скелет, полученные с помощью предыдущего алгоритма. Он выполняется с помощью отслеживания протяженного объекта и классификации областей на три класса (пересечения, разветвления и продолжения), которая проводится с помощью анализа точек пересечения скелета с границами области.
Выбор метода сегментации для площадных объектов зависит от соотношения фона и полутоновых характеристик объектов. Для контрастных изображений лучше всего использовать алгоритмы пороговой сегментации, но в случае слабоконтрастных изображений они не позволяют получить качественный результат. Если фон неравномерен, а изображение включает отдельно лежащие объекты одного типа, и, кроме того, полутоновая величина для пикселей фона меняется равномерно и не делает резких скачков, хорошие результаты получаются при применении морфологической сегментации. В основе разработанного алгоритма лежит полутоновое утоньшение морфологического градиента, сопровождаемое операцией обрезания хвостов на каждую итерацию, которая позволяет получить замкнутые контуры, ограничивающие области, соответствующие объектам. Результаты, полученные с помощью этого метода, соответствуют выделяемым гистологическим объектам (рис. 4).
а) б) в) г)
Рис. 4.Морфологическая сегментация клетки нейрона: а) исходное изображение; б) результат утоньшения полутонового градиента; в) результат заливания; г) результирующее бинарное изображение клетки
В случае, когда в изображении объектов и фона полутоновая величина пикселей принимает любое значение, для сегментации разработан алгоритм объединения областей (рис 5). Отсутствие стадий “засевания”, роста и разделения областей приводит к выигрышу в скорости по сравнению с традиционными алгоритмами роста областей.
Объединение областей происходит при следующих условиях.
Разница дисперсии для полутоновой величины не должна превышать заданного значения, определяющего отличия клетки от ткани.
Среднее значение полутоновой величины каждой области не должно выходить за пределы, ограниченные дисперсией другой области.
а) б) в) г) д)
Рис 5. Сегментация клеток методом объединения областей: а) исходное изображение, б) морфологический градиент, в) утоньшение морфологического градиента, г) объединение областей, д) результирующее бинарное изображение клеток
Причем среднее значение и дисперсия новой области рассчитываются по формулам:
где М1, М2 – средние значения полутоновых величин для родительской и соседней областей, s1, s2 – дисперсии полутоновых величин для родительской и соседней областей, А1, А2 – площади родительской и соседней областей, М12 – среднее значение полутоновой величины для объединённой области, s12 – дисперсия полутоновой величины для объединённой области.
Важной характеристикой клеток, волокон и сосудов в поперечном сечении является их топологическая структура. На этом основывается разработанный алгоритм определения клеток среди бинарных образов, полученных пороговой сегментацией (рис 6).
Алгоритм позволяет откорректировать результат, удалив объекты, не принадлежащие клеткам, и построить мультифазное изображение, в котором отражается иерархия клеточных структур.
Третья глава посвящена сегментации цветных изображений гистологических объектов. Для анализа гистологических препаратов цвет составляющих компонентов ткани играет важную роль. Окрашивание препарата позволяет выделить те или иные клеточные структуры. Причем стандартное преобразование цветного изображения в полутоновое приводит к потере некоторых объектов разной окраски, но одинакового уровня яркости.
Рис 6. Изображение клеток нейронов симпатических ганглиев и построенное мультифазное изображение с иерархической структурой клеток
Алгоритмы сегментации гистологических объектов активно используют методы математической морфологии. Яркость и насыщенность можно охарактеризовать как полутоновые величины. Однако для гистологических изображений цветность можно только ограничить пороговыми значениями в спектре. Поэтому при обработке гистологических изображений цветность нельзя считать полутоновой величиной, несмотря на то, что она обладает такими свойствами, как возможность определения пороговых значений при помощи вычисления градиента.
Для сохранения цветности при использовании операций математической морфологии на цветных изображениях гистологических препаратов была разработана система описания цвета PHS (рис.7).
Рис 7. Декартовы системы RGB и ZYX и системы координат ZYX и PHS
Преобразование в координаты PHS из RGB выполняется по следующим формулам:
Тестирование работы операторов математической морфологии проводилось в четырёх координатных системах описания цвета PHS, HLS, RGB, YIQ на изображениях гистологических препаратов. Из результатов тестирования видно, что для системы HLS изменена яркость, в системах RGB и YIQ искажена цветность, а результат обработки в системе PHS наиболее близок к ожидаемому результату. Сравнение изображений проводилось посредством метрики Хаусдорфа, среднеквадратичной ошибки отклонения e2 и меры сходства изображений. Результаты представлены в табл. 2. Характеристики сходства исходного изображения и обработанного в системе PHS минимальны и свидетельствуют о более качественной обработке изображения.
Работу морфологических операций на цветных гистологических изображениях в системе PHS можно оптимизировать, обрабатывая вектор расстояния цвета и пропорционально ему меняя для пикселя значения по координатам RGB (красного, зелёного, синего лучей). Эта оптимизация увеличивает быстродействие на этапе преобразования координатных систем.
Использование полутоновой морфологии для цветных изображений позволяет более эффективно решать целый ряд задач сегментации изображений гистологических объектов.
Таблица 2
Сравнение результатов тестирования работы операций математической морфологии для цветных изображений
Система |
Метрика Хаусдорфа |
Среднеквадратичная ошибка |
Мера сходства изображений |
HLS |
0,337 |
0,22755 |
0,05178 |
RGB |
0,302 |
0,217798 |
0,047436 |
YIQ |
0,302 |
0,235654 |
0,055533 |
PHS |
0,176 |
0,138054 |
0,019059 |
Реферат опубликован: 15/06/2005 (11418 прочтено)