Страница: 3/18
Культивирование и идентификация вирусов - основные вирусологические методы, используемые в практической вирусологии при диагностике вирусных заболеваний. Материал, в котором подозревается наличие вируса, например лизат бактерий, кусочек ткани или биологическая жидкость, при необходимости измельчают или гомогенезируют с тем, чтобы при контролируемых условиях перевести его в суспензированное состояние.
Большие фрагменты клеток, а также возможные загрязняющие материал микроорганизмы удаляют при помощи центрифугирования и фильтрования. Такую очищенную суспензию вводят подходящему хозяину, либо добавляют к суспензии клеток, либо наносят на монослой соответствующих клеток. В результате в слое чувствительных клеток, таких, как бактерии, растущие в чашке с агаром, или клетки животных, растущие на поверхности стекла, могут появиться локальные поражения, так называемые бляшки, которые характерны для данного вируса.. Бляшки образуются в результате заражения расположенных в данной области клеток, размножения в них вируса и их полного или частичного лизиса. Если размножение вируса не ведет к образованию визуально выявляемых дискретных бляшек, вирус может быть обнаружен и охарактеризован по изменениям, вызываемым им в культуре клеток, или по повреждению слоя клеток либо при помощи других тестов.
Если исследуемый материал не наносят на слой культивируемых клеток, а вводят в организм хозяина, то цель эксперимента - выявление общих реакций организма, свидетельствующих о развитии инфекции: появление симптомов заболевания, гибель животного или какие-либо иные специфические реакции, например образование антител.
Наконец, если ни заражение культуры клеток, ни введение материала в организм хозяина не ведут к появлению каких-либо симптомов вирусной инфекции, вирусологи прибегают к так называемым «слепым пассажам», т.е. к повторным переносам исследуемого материала, что часто приводит к повышению вирулентности вируса или к увеличению его титра.
Общий химический состав вирусов
Непременным компонентом вирусной частицы является какая-либо одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для всех без исключения вирусов, тогда как остальные двалипоиды и углеводы - входят в состав далеко не всех вирусов.
Вирусы, состоящие только из белка нуклеиновой кислоты и зольных элементов, чаще всего принадлежат к группе простых, так называемых минимальных, вирусов, лишенных дифференциации, собственных ферментов или каких-либо специализированных структур. К такого рода вирусам принадлежат вирусы растений, некоторые вирусы животных и насекомых. В то же время практически все бактериофаги, которые по химическому составу, безусловно принадлежат к группе минимальных вирусов, на самом деле являются очень сложными и высокодифференцированными структурами. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Большая часть вирусов этой группы паразитирует на животных.
Белки вирусов
Аминокислотный состав вирусных белков
Белок всех исследованных до настоящего времени вирусов построен из обычных аминокислот, принадлежащих к естественному L-ряду. D-аминокислот в составе вирусных частиц не найдено. Соотношение аминокислот в вирусных белках достаточно близко к таковому в белках животных, бактерий и растений.
Вирусные белки не содержат обычно большого количества основных аминокислот (аргинина, муцина), т.е. не принадлежат к группе белков типа гистонов и протаминов с ярко выраженными щелочными свойствами. Не учитывая нейтральных аминокислот, можно сказать, что в вирусном белке преобладают кислые дикарбоновые кислоты. Это справедливо как для вирусов с низким содержанием нуклеиновой кислоты, так и для вирусов с высоким содержанием РНК и ДНК.
Вирусная ДНК
Главной структурной особенностью большинства вирусных молекул ДНК, как и ДНК из других источников, является наличие двух спаренных антипараллельных цепей. ДНК-геном вирусов, однако, невелик и поэтому здесь возникают вопросы, касающиеся концов спирали и общей формы молекулы ДНК, а не монотонной, фактически не имеющей концов «средней» части спирали. Полученные ответы оказались весьма удивительными: молекулы вирусных ДНК могут быть линейными или кольцевыми, двухцепочечными или одноцепочечными по всей своей длине или же одно цепочечными только на концах. Кроме того, выяснилось, что большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу, однако на концах могут находиться повторяющиеся, или избыточные участки.
Из всех описанных до сих пор вирусных ДНК наиболее сложно организована ДНК вируса герпеса. Геном здесь, по-видимому, состоит из двух больших соединенных сегментов, каждый из которых имеет повторяющиеся концевые последовательности. Возможны четыре способа соединения двух таких сегментов конец в конец, и все они как будто бы встречаются в каждом препарате вирионов.
Наибольший из известных вирусов - вирус осповакцины имеет геном размером 15-108 дальтон. ДНК, выделенная из свежего препарата вирионов, по-видимому, имеет поперечные сшивки, так как не разделяется по две цепи. Одна из возможных моделей такой молекулы - гигантская, не подверженная денатурации кольцевая структура, образующаяся при замыкании концов линейной двойной спирали.
Помимо очень интересных различий в форме молекулы и в структуре концевых участков вирусных ДНК существуют также большие различия в величине генома. Среди наименьших «полных» вирусов (т.е. вирусов, способных размножаться в клетке-хозяине) можно назвать фаг ÆX174, парвовирусы, паповирусы, вирусы полиомы и SV40. С другой стороны, у крупных бактериофагов и вирусов человека и животных (паприляр, герпеса и осповакцины) геном значительно больше - от 1 до 1,5.108 дальтон, так что он мог бы кодировать более 100 белков. Действительно, у бактериофага Т4 сейчас идентифицировано больше ста генов.
В 1953 г. Уайетт и Коэн сделали неожиданное открытие, весьма существенное для последующих экспериментов: оказалось, что в ДНК Т-четных бактериофагов содержится не цитозин, а 5-гидроксиметилцитозин. Это отличие дало возможность изучать фаговые ДНК независимо от ДНК хозяина. Были открыты кодируемые фагом ферменты, которые изменяют метаболизм инфицированной клетки, и она начинает синтезировать компоненты, необходимые вирусу. Еще одно биохимическое отличие ДНК бактериофага состоит в том, что к ее гидроксиметилцитозину присоединены остатки глюкозы: последние, видимо, препятствуют прерыванию фаговой ДНК некоторыми ферментами хозяина.
В противоположность этому у вирусов животных ДНК почти не подвергается модификациям. Например, хотя ДНК клеток-хозяев и содержит много метилированных оснований, у вирусов имеется в лучшем случае лишь несколько метильных групп на геном. Большинство вирусных дезоксинуклеотидов не модифицированы, и поэтому нахождение несомненных модификаций представляло бы большой интерес.
Вирусная РНК
Исследования вирусной РНК составили один из самых значительных вкладов вирусологии в молекулярную биологию. Тот факт, что у вирусов растений реплицируемая генетическая система состоит только из РНК, ясно показал, что и РНК способна сохранять генетическую информацию. Была установлена инфекционность РНК вируса табачной мозаики, и выяснилось, что для инфекции необходима вся ее молекула; это означало, что интактность структуры высокомолекулярной РНК существенно для ее активности. Не менее важным результатом ранних исследований на том же вирусе явилась разработка методом выделения высокомолекулярной РНК и изучения ее свойств. Эти методы послужили в дальнейшем основой для изучения различных типов РНК, встречающихся у других вирусов.
Размеры вирионов РНК - вирусов сильно варьируют - от 7.106 дальтон у пикорнавирусов до >2.108 дальтон у ретровирусов; однако размеры РНК и, следовательно, объем содержащейся в ней информации различаются в значительно меньшей степени.
РНК пикорнавирусов - вероятно, наименьшая из известных - содержит около 7500 нуклеотидов, а РНК парамиксовирусов - едва ли не самая крупная - почти 15000 нуклеотидов. По-видимому, всем независимо реплицирующимся РНК-вирусам нужен какой-то минимум информации для репликационной системы и капсидного белка, но у них отсутствует очень сложная добавочная информация, которой могут обладать крупные ДНК-вирусы.
Вирусные белки
Кроме капсидных белков, образующих «футляр» для нуклеиновой кислоты, у вирусов с оболочками имеются и другие белки. Подобные примеры можно найти среди вирусов животных (в том числе насекомых), растений и бактерий. Кроме белков, входящих в состав нуклеопротеидного «ядра», вирионы могут содержать еще вирус - специфические белки, которые были встроены в плазматические мембраны зараженных клеток и покрывают вирусную частицу, когда она выходит из клетки или «отпочковывается» от ее поверхности. Кроме того, у некоторых вирусов с оболочкой существует субмембранный матриксный белок между оболочкой и нуклеокапсидом. Вторую большую группу вирус-специфических белков составляют некапсидные вирусные белки. Они в основном имеют отношение к синтезу нуклеиновых кислот вириона.
Аминокислотный состав вирусных белков
Белок всех исследованных до настоящего времени вирусов построен из обычных аминокислот, принадлежащих к естественному L-ряду. Д-аминокислот в составе вирусных частиц не найдено. Соотношение аминокислот в вирусных белках достаточно близко к таковому в белках животных, бактерий и растений. Вирусные белки не содержат обычно большого количества основных аминокислот (аргинина, муцина), т.е. не принадлежат к группе белков типа гистонов и протаминов с ярко выраженными щелочными свойствами. Не учитывая нейтральных аминокислот, можно сказать, что в вирусном белке преобладают кислые дикарбоновые кислоты. Это справедливо как для вирусов с низким содержанием нуклеиновой кислоты, так и для вирусов с высоким содержанием РНК и ДНК.
Реферат опубликован: 7/04/2005 (46008 прочтено)