Страница: 5/7
Тепловой эффект ЭМП в тканях живых организмов.
Нагревание тканей тела животных и общее повышение температуры тела под действием ЭМП зависят не только от величины электромагнитной энергии, преобразующейся в тепловую, но в значительной степени от терморегуляторных свойств организма.
У гомойотермных животных (птиц и млекопитающих) при данной температуре тела результирующая теплоотдача равна алгебраической сумме теплообразования за счет обменных процессов и теплопотерь за счет излучения, а также испарения при дыхании (а у человека и при потоотделении), как это показано на рисунке.
В интервале температур, при которых организм еще способен к терморегуляции, - между точками пересечения результирующей кривой с осью абсцисс — преобладают теплопотери, что ведет к восстановлению нормальной температуры тела.
При дальнейшем повышении температуры теплообмен может стать положительным, и температура тела будет возрастать вплоть до гибельной.
Эксперименты, проведенные с фантомами, имитирующими тело животных, показали, что с увеличением объема объекта требуется все большее время для нагревания его до заданной температуры при помощи ЭМП данной мощности. Это объясняется, во-первых, тем, что для нагревания большего объема нужно больше калорий, и, во-вторых, тем, что при одинаковой глубине проникновения энергии ЭМП в ткани доля объема, в которой происходит поглощение, будет тем больше, чем меньше объем. Например, если ЭМП с частотой 300 Мгц проникает на глубину 2,5 см (для мышечных тканей), то это означает, что у крысы (диаметр тела 5-6 см) энергия ЭМП поглощается практически во всем теле, а у собаки (диаметр тела 20-25 см) - только в незначительной поверхности части тела.
Было проведено более детальное теоретическое исследование условий нагревания тканей тела человека и различных животных под действием микроволн. Время, необходимое для повышения температуры тела на 5° (ΔΤ = 5°), вычислялось из уравнения
где G - масса тела, Сb - удельная теплоемкость, М - тепло за счет метаболизма, Е-тепло за счет облучения микроволнами, Sb - поверхность тела, αab - коэффициент теплопередачи воздух - тело, θab- начальная разница температур воздух - тело.
В результате исследователи пришли к выводу, что при очень больших значениях t, соответствующих малой интенсивности облучения, практически нет разницы в скорости нагревания животных разных размеров, но при больших интенсивностях (t мало) тело малых животных нагревается быстрее.
Результаты большинства исследований зависимости теплообразования в тканях животных от интенсивности и времени воздействия ЭМП, а также характера распределения температуры в тканях были противоречивыми: в одних случаях отмечалось более значительное нагревание в глубоких тканях по сравнению с поверхностными, в других - противоположное распределение температуры, в третьих - наличие как положительного, так и отрицательного градиента температуры в зависимости от условий воздействия ЭМП. Основными причинами этих расхождений можно считать несовершенство дозирования поглощаемой мощности и несопоставимость ряда условий экспериментов.
Делались попытки теоретически оценить количество тепла, выделяющегося на заданном расстоянии от облучаемой поверхности, и рассчитать соответствующее повышение температуры. Однако сравнение расчетных данных с экспериментальными показало приближенное соответствие только при малых продолжительностях облучения.
Экспериментальная оценка пороговых интенсивностей ЭМП для теплового эффекта была проведена в различных частотных диапазонах при общем и локальном воздействии ЭМП на человеке и животных. Границу теплового эффекта определяли по минимальному повышению температуры тела или тканей, не превышающему нормальных ее колебаний в организме. В качестве признака появления теплового эффекта у человека использовали также и минимальное теплоощущение. Было установлено, что зависимость между теплоощущением и мощностью ЭМП, поглощаемой в тканях (в диапазоне 20-200 Мгц), выражается соотношением:
H=lg P - a lg P0
где H - теплоощущение, оцениваемое по 4-балльной системе (едва ощутимое тепло, умеренное тепло, интенсивный нагрев, едва переносимый нагрев), Ро-поглощаемая мощность, при которой ощущается едва заметное тепло, Р-данная поглощаемая мощность, а - постоянная, не зависящая от частоты (хотя Ро варьирует с частотой).
Из результатов эксперимента следует, что пороговые интенсивности ЭМП уменьшаются с повышением частоты. Это и понятно, так как коэффициент поглощения электромагнитной энергии пропорционален частоте и величине электрических параметров σ и ε, которые в свою очередь изменяются с частотой.
В заключение следует отметить, что в работах, посвященных тепловому эффекту ЭМП, неоднократно обсуждалась возможность избирательного нагревания микрочастиц в биосредах, не сопровождающегося существенным нагреванием окружающей их среды. Однако теоретический анализ показал, что такое избирательное нагревание возможно только в том случае, если частицы достаточно крупны—не менее 1 мм в диаметре. Поэтому нет оснований рассчитывать на избирательное нагревание микрочастиц (клеток, бактерий) при отсутствии существенного нагревания среды, в которой они суспендированы.
Нетепловые эффекты ЭМП в биосредах.
Были проведены экспериментальные и теоретические исследования некоторых интересных микропроцессов, протекающих под действием ЭМП.
Первый процесс такого рода состоит в том, что под действием непрерывных и импульсных ЭМП высоких и ультравысоких частот (1-100 Мгц) суспендированные частицы угля, крахмала и молока, эритроциты и лейкоциты выстраиваются в цепочки, расположенные параллельно электрическим силовым линиям. Для каждого типа частиц имеется оптимальный диапазон частот, в пределах которого эффект возникает при минимальной напряженности поля.
Теоретические исследования показали, что формирование цепочек происходит в результате притяжения между частицами, в которых под действием ЭМП индуцируются дипольные заряды (см. рис.).
В неполярной диэлектрической среде (масло) этот эффект возникает и при низких частотах и даже в электростатическом поле, но в воде и физиологическом растворе ионы и дипольные молекулы шунтируют поле низкой частоты и эффект возможен только при достаточно высоких частотах (выше десятков Мгц). Постоянная времени формирования цепочек пропорциональна кубу радиуса частиц (она равна 1 сек. при радиусе в 1 мк). Она мало зависит от Е в слабых полях и обратно пропорциональна Е2 в сильных полях. В импульсных ЭМП эффект определяется средним значением Е.
Несимметричные частицы ориентируются либо параллельно, либо перпендикулярно к направлению силовых линий. Это зависит от соотношения между удельной проводимостью частиц и окружающей их среды и от частоты ЭМП (для электрических параметров, близких к биологическим).
Второй эффект — «диэлектрическое насыщение» в растворах белков и других биологических макромолекул под действием высокоинтенсивных ЭМП сверхвысоких частот. Он предполагает, что под действием таких полей все поляризованные боковые цепи макромолекул ориентируются в направлении электрических силовых линий и что это может приводить к разрыву водородных связей и других вторичных внутри- и межмолекулярных связей и к изменению зоны гидратации (от которой зависит растворимость молекул). Такие эффекты могли бы вызывать денатурацию или коагуляцию молекул, что подтверждается экспериментально.
Третий эффект обусловлен действием сил Лоренца в переменных полях на ионы в электролите. Если раствор электролита находится под действием перпендикулярных друг другу и синфазно изменяющихся электрического и магнитного полей, то электрическое поле (в среднем по времени) не оказывает влияния на ионы, а под действием сил Лоренца и положительные и отрицательные ионы перемещаются в одном направлении - перпендикулярно направлению электрических силовых линий. Такого рода эффекты были экспериментально обнаружены. Нужно подчеркнуть, что рассматриваемые эффекты зависят от суммы подвижностей ионов, а не от их разности и указывают на возможность возникновения такого эффекта под действием электромагнитной волны, распространяющейся в среде. При этом действию сил Лоренца в клеточной среде будут подвергаться не только ионы электролита, но и свободные метаболиты в ионизированной форме.
Наибольший интерес представляют эффекты резонансного поглощения ЭМП различных частотных диапазонов в биологических средах.
Была теоретически рассмотрена возможность резонансного поглощения ЭМП белковыми молекулами в связи с так называемыми дисперсионными силами взаимодействия. В белках, содержащих ряд нейтральных и отрицательно заряженных основных боковых групп, среднеквадратичная величина дипольного момента отлична от нуля, даже если их средний постоянный момент равен нулю. Это обусловливается тем, что (за исключением случая сильно кислотных растворов) число поляризованных боковых групп в белковой молекуле обычно превышает число связанных с ними протонов, так что существует множество возможных конфигураций распределения протонов в молекуле, мало отличающихся по свободной энергии. Для молекул ферментов, в предположении непрерывного распределения основных групп, среднее расстояние между группами составляет примерно 9,5 Å. С такими диполь-дипольными взаимодействиями, происходящими за счет флуктуации распределения протонов, может быть связано поглощение кванта энергии, соответствующего частоте 10 Ггц. Авторы предположили, что такое резонансное влияние ЭМП на распределение протонов в молекуле фермента может привести к изменению скорости образования фермент-субстратного комплекса.
Реферат опубликован: 7/04/2005 (52395 прочтено)