Электронно-микроскопические методы исследования в медицине

Страница: 2/3

При использовании метода замораживания-высушивания кусочки ткани помещают в хладагенты (пропан, изопентан или фреон), охлажденные до -150˚, и в клетках мгновенно прекращаются обменные процессы. При этом в ткани не успевают образовываться кристаллы льда, и поэтому субклеточные структуры не разрушаются, а вода переходит в стекловидное состояние. Затем в высоком вакууме (10-6 –10-7 мм рт.ст.) происходит сублимация, после чего в ткани специальным образом заливают замороженные метакрилаты, аралдит или вестопал В. Однако, не всегда удается достаточно быстро равномерно заморозить ткань, а, следовательно, полностью избежать образования кристаллов льда, которые при повышение температуры повреждают внутриклеточные структуры. Возникают и другие трудности, приводящие к появлению артефактов. Поэтому, чаще применяют разновидность этого метода: замораживание-замещение. После замораживания воду, перешедшую в стекловидное состояние, удаляют, помещая ткань в обезвоживающие вещества при низкой температуре. В этих условиях спирт и ацетон мало влияют на структуру клеток. Метод криоскалывания (замораживание-травление) позволяет избежать возникновения химической реакции при обработке тканей. Фрагменты тканей замораживают в хладагенте со скоростью превышающей 1000˚ в 1 с. Объект помещают в вакуумную камеру и тем или иным способом раскалывают или разрывают. На поверхности скола наносят платиноуглеродное покрытие (реплику). Затем реплику очищают от органических остатков в растворе сильного окислителя, промывают в воде и помещают на сеточку для электронной микроскопии.

Для исследований поверхности биологических тканей используют и метод оттенения. Наибольшее распространение получил метод приготовления реплик путем напыления в вакуумной камере углерода на поверхность образца тканей. Для контрастирования образовавшейся реплики на нее под острым углом напыляют электронно-плотные вещества (платину или платиноиридиевый сплав). При этом количество атомов металла значительно больше, на той стороне контуров образца, которая ближе к источнику напыления: при исследовании в электронном микроскопе она выглядит неконтрастной. Противоположная поверхность контура имеет мало атомов металла: в электронном микроскопе она контрастна и как бы оттеняет неконтрастную поверхность контура. Метод отражения позволяет рассчитать высоту контуров исследуемого объекта, так как известен угол напыления, длина тени и увеличения, при котором производилось фотографирование реплики в электронном микроскопе.

Для изучения поверхности изолированных клеток и тканей служит сканирующая (растровая) ЭМ. Одним из основных условием приготовления объекта для сканирующей ЭМ является необходимость сохранения соответствующего поверхностного натяжения клеток во избежание их деформации. Поверхность изучаемой ткани промывают сбалансированными изотоническими забуференными солевыми растворами или безбелковыми культуральными средами с рН 7,3-7,4, подогретыми до температуры 37˚. Для фиксации обычно применяют изотонический раствор глутаровоальдегида с последующей дофиксацией четырехокисью осмия. Ткань обезвоживают в спиртах или ацетонах, а затем высушивают методами замораживания-высушивания или перехода критической точки. Последний основан на использовании такого физического явления как возникновение при определенных условиях критического состояния равновесия пара и жидкости. При этом методе ткань оказывается в газовой среде (т.е. высушенной), что позволяет избежать повреждающего действия поверхностного натяжения. Для достижения высоких степеней разрешения повышают электропроводность объекта, напыляя на него тяжелые металлы: золото, платину, серебро или их сплавы.

Применяется также метод ионной бомбардировки в вакууме пластинки металла ионами инертного газа. «Выбитые» атомы металла оседают на поверхности объекта исследования. Для выявления внутритканевых и внутриклеточных структур применяют механические, термические, химические и другие методы.

Для ЭМ микробов применяют сходные методы с учетом строения микробов их размеров, осмотического давления и др. Особый подход осуществляется при ЭМ вирусов. Изучение структур вирусов затруднено из-за малых размеров и слабой рассеивающей способности вириона. На первых этапах ЭМ вирусов эта трудность преодолевалась оттененением частиц при испарении тяжелых металлов в вакууме. Вплоть до конца 50-ых годов 20 века методика оттенения вирусных частиц была основной при изучении вирусов в суспензиях. Чаще для этой методики использовали уран 238, платину, палладий или сплавы платины с палладием. Наибольшее распространение получил сплав платины с палладием в соотношении 4:1. Зная заданный угол оттенения, по длине образующейся тени определяют высоту вирусной частицы и ее диаметр. Оттенение металлами исследуемого объекта при сочетании с криогенными методиками (замораживание-высушивание) позволяет получить важную информацию при изучении структуры вириона изометрических вирусов.

Широкое распространение получила методика негативного контрастирования вирусов с помощью вольфрамофосфорной кислоты (Н3РW12О40), которая при подщелачивании едким калием или едким натрием (от значения рН 2,0 до рН 7,0) изменяется и после нанесения препарата на вирус создает зону высокого рассеивания электронов, в результате чего выявляются морфологические признаки вируса.

Развитию знаний о структуре вириона способствовали криогенные методики. Один из простейших вариантов таких методик заключается в следующем: сетки с подложкой и находящимися на них вирусами после нанесения контрастирующего раствора помещают в сжиженный пропан (температура -150˚) или переохлажденный азот (температура -200˚). Дальнейшее высушивание образца при температуре -100˚ в глубоком вакууме способствует сохранению трехмерной организации вириона. Исключение в этих условиях деформирующей роли сил поверхностного натяжения воды привело к пересмотру точки зрения, что форма вириона у липидосодержащих вирусов обладает высокой лабильностью. Более сложные криогенные методики, применяемые в электронной микроскопии (например, криоскалывание), также внесли заметный вклад в развитие представлений о структуре вирионов, особенно об имеющих липопротеидную оболочку.

Структура генома вирусов изучается с помощью модифицированной в 1959 году Клейштейном и Лангом методики оттенения линейных макромолекул тяжелыми металлами, которые испаряются с В-образным катодов под углом в 5-10˚.

Условием, позволяющим изучить нуклеиновые кислоты, и особенно однонические (поперечный размер 1-1,1 нм), является связывание их с основными белками, т.к. при этом образующийся нуклеопротеид имеет диаметр до 18 нм в двунитчатых структурах и до 15 нм – в однонитчатых. В качестве такого белка чаще используют цитохром С. Помещенная на подложку нуклеиновая кислота в белковом чехле имеет самый причудливый контур, и возможность увидеть ее на всем протяжении осуществима только в том случае, если во время оттенения металлами будет совершен хотя бы один поворот сетки с объектом для напыления на 360˚. Лучшие результаты достигаются при длительном оттенении (до 10 минут) сплавом платины с палладием и многократном поворачивании напыленной сетки на вращающемся столике.

Многочисленные модификации методики Клейшмидта и Ланга позволяют получать данные не только о длине генома, но изучать и степень гомологии генома различных вирусов, локализовать вставку того или иного гена в состав гибридных молекул, исследовать гибридные молекулы нуклеиновых кислот.

Общая информация о морфогенезе вирусов получена с помощью ультратонких срезов вирусов. Техника получения ультратонких срезов вирусов не отличается от общепринятой.

В последние годы возрастает удельный вес ЭМ как экспресс-метода или диагностики вирусных инфекций. Особенно велика роль метода иммунной микроскопии, позволяющего установить родовую принадлежность вируса.

Иммунная ЭМ сыграла решающую роль на первых этапах исследования инфекционного гепатита (гепатита А), а также вирусных гастроэнтеритов и внесла существенный вклад в изучение гепатита В.

Теоретические основы иммуноморфологии на светооптическом уровне разработаны в 1942 году Кунсом с сотрудниками, которые впервые показали, что в молекулу антитела можно ввести некоторые вещества, не нарушая существенно их специфичности. Развитие этой идеи позволило в 1959 году Зингеру разработать иммунноморфологический метод на электронномикроскопическом уровне, основанный на использование антител, меченных ферритином. Ферритин-белок с высоким содержанием железа, в котором атомы металла организованны в 4 субъединицы, расположены близко друг к другу, что обеспечивает высокое рассеивание электронов при ЭМ и четкое выявление молекулы.

Конъюгация белка с антителом возможна с помощью различных бифункциональных агентов, наибольшее распространение среди которых получили 3,4-толуендиизоцианат и ксиленметадиизоцеанат. Иммунная электронная микроскопия с помощью антител, меченных ферритином, эффективна для выявления экстрацеллярных антигенов микробов в инфицированных тканях, в том числе вирусных антигенов на поверхности клетки, а также поверхностных антигенов в клетке. Вместе с тем эта методика в ряде случаев неэффективна, например, если необходимо исследовать внутриклеточные объекты, антигены микробов внутри клетки, что имеет место, в первую очередь, при вирусных инфекциях. Это обусловлено тем, что молекулярный вес (масса) антител, меченных ферритином, около 800 тыс., и поэтому проихождение их через плазматическую мембрану клетки невозможно, а антитела, меченные ферритином, проникшие через нее путем эндоцитоза не вступают в контакт со специфическим антигеном. Поэтому основная масса исследований, связанная с выявлением внутриклеточных антигенов с помощью антител, меченных ферритином, выполнена при разрушении плазматической мембраны путей замораживания-оттаивания или обработки комплиментом. Замена ферритина низкомолекулярными соединениями, содержащими ртуть, йод, не нашла широкого применения из-за низкой специфичности метода.

Реферат опубликован: 16/06/2005 (8631 прочтено)