Допплеровский измеритель скорости кровотока

Страница: 8/27

3

V a

Da

2

Oval: Hz
00
4 5 6 7 8

f2

fg

f0

рис 2.3 Структурная схема УЗ измерителя скорости кровотока с использованием эффекта Допплера.

Измерительный участок этих устройств содержит два установленных на теле пьезоэлектрических преобразователя 1 и 2 с диаграммами направленности, пересекающимися на оси кровотока или в точках сечения, где скорость равна средней скорости потока. Для получения максимальной чувствительности углы между осями главных лепестков диаграмм направленности преобразователей и направлением потока устанавливаются дополнительными до 1800. Излучающий преобразователь 1 возбуждается генератором 4 синусоидальных колебаний. Непрерывные УЗ колебания с частотой f0 рассеиваются на неоднородностях потока, которыми могут служить эритроциты в крови. Перемещающиеся вместе с потоком рассеиватели можно рассматривать как вторичные источники УЗ колебаний с частотой

f1=f0 ,

где v – скорость перемещения рассеивателя; с – скорость звука в контролируемой среде; a - угол ввода УЗ колебаний в поток.

Вторичные УЗ звуковые колебания, возникающие в области 3, достигают приемный преобразователь 2 и воспринимается как колебания с частотой:

f2=,

Центральная частота доплеровского спектра определяются как разность

fд=f0 – f2=.

Непрерывные УЗ колебания, воспринятые преобразователем 2, преобразуются в электрические и через усилитель 5 поступают на вход смесителя 6 частоты, на второй вход которого подается частота возбуждения f0. Фильтр нижних частот 7 используется для выделения допплеровской частоты fд, которая регистрируется частотомером 8.

Если учесть, что объемный расход Q через измерительный участок круглого сечения диаметром D связан со скоростью потока в озвучиваемой области соотношением:

,

где m – коэффициент, учитывающий несовпадение средней скорости потока со скоростью рассеивателя, то статическая характеристика допплеровского УЗ измерителя скорости кровотока может быть представлена в виде

Практические схемы допплеровских УЗ измерителей несколько сложнее изображенной на рис 2.3. В них производится учет «размытия» допплеровского спектра из-за конечности угловой ширины Da характеристик направленности преобразователей. Благодаря различию проекций скоростей вторичных источников УЗ колебаний на границы озвученных областей отраженный от области 3 сигнал будет содержать спектр частот от до .

Ширина допплеровского спектра равна:

,

После несложных тригонометрических преобразований:

=,

откуда следует, что ширина спектра пропорциональна угловой ширине диаграммы направленности. Увеличение диапазона выходной частоты УЗ расходомера за счет «размытия» спектра, что в свою очередь, приводит к ухудшению помехоустойчивости устройства. Для ослабления помех, сопутствующих отраженному сигналу, в ряде практических реализаций используют автоматические системы фазовой или частотной подстройки частоты.

К методическим погрешностям допплеровских устройств в первую очередь относится сильная зависимость измерительной информации от изменений скорости звука в контролируемой среде. Неравномерность распределения рассеивателей в озвучиваемом объеме, а также нарушение условия их гидродинамической пассивности относительно потока приводят к существенной случайной погрешности. Малый КПД преобразования (отношение энергии отраженных УЗ колебаний к возбуждению) требует больших мощностей возбуждения. Для допплеровских измерителей скорости кровотока характерна сильная зависимость показаний от профиля скоростей в вене или артерии, так как они не являются датчиками интегрирующего типа.

Практические схемы доплеровских измерителей, основанные на различных компенсационных методах, не одинаково реализуют приведенные выше достоинства.

В схеме показанной на рис.2.4, направления УЗ луча и потока составляют угол, близкий к прямому.

Oval: V
0000
1 2 3 7 4 5 8 9

6

рис. 2.4 Типовая структурная схема измерения сноса УЗ колебаний

Генератор 1 непрерывных колебаний рабочей частоты возбуждает излучающий пьезопреобразователь 2. Приемный пьезопреобразователь 3 составлен из двух идентичных пьезоэлементов, сориентированных таким образом, что в неподвижной крови интенсивности УЗ колебания вблизи лицевых поверхностей одинаковы. С появлением движения скорость звука с и осредненная по длине луча скорость кровотока v геометрически суммируются, и направление распространения УЗ колебаний отклоняется от начального на угол q, величина которого определяется соотношением

q=arcsin v/c@v/c

Для увеличения чувствительности этих устройств УЗ колебания, прежде чем достичь приемного преобразователя, испытывают несколько отражений от внутренней поверхности артерии. В этом случае снос луча у лицевой поверхности приемного преобразователя выражается формулой:

Dd=DNq@DN(v/c),

где D – внутренний диаметр артерии, N – число отражений УЗ колебаний.

Отношение изменения интенсивностей УЗ колебаний на приемных пьезоэлементах DI к начальной интенсивности I0 в неподвижной среде можно считать пропорциональным отношению сноса к средней ширине УЗ луча на приемном преобразователе, т.е.

,

где k – постоянный коэффициент.

При этом допущении оказывается, что изменение интенсивностей на приемных пьезоэлементах является мерой скорости потока в озвученной области среды.

Выражая скорость потока через расход, получаем упрощенную статическую характеристику метода:

,

где m – коэффициент, учитывающий несовпадение средней скорости кровотока со скоростью усредненной вдоль УЗ луча.

Сигналы с приемных пьезоэлементов поступают на дифференциальный усилитель 4, выходное напряжение которого выпрямляется с помощью детектора 5 и регистрируется индикатором 6.

Для исключения зависимости выходного напряжения от скорости звука схему обычно дополняют импульсно-циклическим измерителем скорости звука и арифметическим устройством для коррекции результатов измерений. импульсно-циклический скоростемер включает в себя дополнительный пьезопреобразователь 7, излучающий импульсы перпендикулярно оси артерии, и генератор 8 возбуждающих импульсов, образующих единую замкнутую цепь – «синхрокольцо». В системе «синхрокольца» каждый УЗ импульс, отразившись от стенки артерии, воспринимается преобразователем 7 и вновь запускает генератор. Частота следования импульсов в этом устройстве, пропорциональная скорости звука в контролируемой среде, вместе с выходной информацией измерителя сноса поступает на вход арифметического устройства 9, корректирующего результаты измерений. Однако, поскольку контролируемая среда – кровь – имеет вполне определенную скорость распространения звука, то данная схема не представляет собой актуальную разработку.

Фазовый метод измерения характеризуется использованием непрерывных УЗ колебаний. В основе фазовых схем лежит сопоставление сдвига фаз колебаний, прошедших через поток. Статическая характеристика фазовых УЗ измерителей имеет вид:

* Dj=

Oval: V
00

Реферат опубликован: 8/04/2005 (78047 прочтено)