Заболевания надпочечников

Страница: 3/5

Как было указано выше, в сетчатом слое коры надпочечников происходит секреция половых гормонов (андрогенов и эстрогенов). Механизм действия и регуляция секреция половых гормонов описаны в главе 8.

Биосинтез кортикостероидов – сложный многоступенчатый процесс, осуществляемый при участии ферментов. Нарушение синтеза ферментов (в количественном или качественном отношении) приводит к нарушению биосинтеза кортикостероидов и развитию патологических состояний. Как правило, такие нарушения синтеза ферментов генетически обусловлены и лишь единичные случаи являются вторичными, возникающими в постнатальном периоде под влиянием различных повреждающих факторов (инфекция и др.)

На схеме 33 было показано, что наиболее часто встречаются нарушения следующих ферментов.

Дефект десмолазы или Р450scc (липоидная гиперплазия надпочечников). Очень редкая патология и в мировой литературе описано всего около 30 случаев такой патологии. При этом вследствие недостатка ферментов данной группы нарушается биосинтез кортикостероидов на самом раннем этапе, а именно блокируются отщепление боковой цепи холестерина и образование прегненолона, что проявляется резкой надпочечниковой недостаточностью. Кора надпочечников утолщена (гиперплазия), желтого цвета вследствие накопления холестерина. Новорожденные с таким дефектом, как правило, умирают в первые дни постнатального периода. Вне зависимости от генотипа строение наружных половых органов по женскому типу. При неполной блокаде десмолазной реакции жизнь новорожденных более продолжительна.

Дефект 3b-гидроксистероидной дегидрогеназы. Сравнительно редкая недостаточность 3b-гидроксистероидной дегидрогеназы, которая всегда сопровождается недостаточностью кортизола и наличием сольтеряющего синдрома. Недостаточность указанного фермента приводит к снижению синтеза кортизола и избыточного образования дегидроэпиандростерона. Нарушается, таким образом, образование глюкокортикоидов и минералокортикоидов, тогда как прегненолон избыточно превращается в дегидроэпиандростерон и 17a-гидроксипрогестерон, которые избыточно экскретируются с мочой. Хотя дегидроэпиандростерон обладает небольшой андрогенной активностью, тем не менее это приводит к нарушению наружных половых органов. Недостаточность биологически активных андрогенов у плодов мужского пола может приводить к развитию гипоспадии, а у новорожденных женского пола наблюдаются явления вирилизации (клиторомегалия).

При неклассической форме недостаточности этого фермента заболевание проявляется у детей в виде преждевременного пубертата, а у женщин в виде гирсутизма или олигоменореи, что часто трактуется как яичниковая гиперандрогения.

Дефект 17a-гидроксилазы или Р450с17. Как правило, недостаточность этого фермента сочетается с недостаточностью 17,20-лиазы. Это также сравнительно редкая патология биосинтеза кортикостероидов, при которой основные нарушения проявляются в образовании кортизола и других 17-гидроксикортикостероидов, а также эстрогенов и андрогенов. Выявлен аутосомно-рецессивный тип наследования. Биосинтез кортикостероидов сдвигается в сторону избыточного образования минералокортикостероидов, в основном дезоксикортикостерона, уровень которого в сыворотке крови может быть в 30-40 раз выше, чем в норме. Это приводит к задержке натрия в организме, гипокалиемическому алкалозу и артериальной гипертензии. Развивающаяся вследствие этого гиперволемия угнетает высвобождение ренина и соответственно ангиотензина, в связи с чем секреция альдостерона снижена и часто его уровень в сыворотке крови не определяется. В некоторых случаях может иметь место селективная недостаточность 17,20-лиазы, что сопровождается у таких больных нормальным содержанием кортизола и дезоксикортикостерона в сыворотке крови, при сниженном уровне гормонов надпочечника и половых желез. Недостаточность секреции эстрогенов, андрогенов при комбинированной недостаточности обоих ферментов приводит у женщин к первичной аменорее, недоразвитию вторичных половых признаков, а у мужчин – к псевдогермафродитизму и гинекомастии.

Дефект 21-гидроксилазы или Р450с21. Наиболее частая причина врожденной гиперплазии надпочечников. Как и предыдущая патология, характеризуется аутосомно-рецессивным типом наследования. Типично для этого нарушения избыточное образование 17a-гидроксипрогестерона и выделение его метаболита прегнантриола с мочой. При сольтеряющем синдроме выявляются низкое содержание натрия и высокий уровень калия в сыворотке крови. Повышено выделение натрия с мочой. Для подтверждения недостаточности 21-гидроксилазы необходимо определение концентрации 17-гидроксипрогестерона в плазме, которая, как правило, превышает в несколько раз уровень, наблюдаемый у здоровых новорожденных (от 100 до 700 нмоль/л при норме 50-60 нмоль/л). В связи с низкой секрецией альдостерона юкстагломерулярный аппарат почек гипертрофирован, а уровень ренина и ангиотензина в крови повышен.

Дефект 11b-гидроксилазы или Р450с11. Нарушается образование кортизола и вследствие избыточной секреции АКТГ биосинтез кортикостероидов осуществляется по пути образования андрогенов, что сопровождается вирилизацией. Образование избытка 11-дезоксикортикостерона и 11-дезоксикортизола приводит к развитию гипертензии. Отмечается избыточная экскреция с мочой тетрагидропроизводных 11-дезоксикортикостерона и 11-дезоксикортизола, а также прегнантриола и этиохоланолона. Наряду с вирилизацией у больных отмечается пигментация кожных покровов.

Дефект 18-гидроксилазы (кортикостерон метилоксидазы I – КМО I) и 18- оксидазы (кортикостерон метилоксидазы II -КМО-II). Проявляется в виде сольтеряющего синдрома и гипотонии. При этом нарушается биосинтез альдостерона, уровень которого в сыворотке крови не определяется, а предшественники альдостерона – 11-дезоксикортикостерон и кортикостерон – обнаруживаются в избыточном количестве. В связи с нормальной продукцией кортизола и АКТГ при этой патологии не развивается гиперплазия коры надпочечников, чем эта патология отличается от перечисленных выше.

Мозговой слой надпочечника и симпатическая нервная система являются производными нервного гребешка, т.е. имеют нейроэктодермальное происхождение и служат местом образования катехоламинов, к которым относят дофамин, норадреналин и адреналин. Биосинтез этих низкомолекулярных веществ происходит в хромаффинных клетках мозгового слоя надпочечника, ЦНС и адренергических симпатических волокнах постганглионарных нейронов. Катехоламины являются нейротрансмиттерами, которые опосредуют функцию ЦНС и симпатической нервной системы, принимая основное участие в регуляции сердечно-сосудистой системы. Исходным продуктом для образования катехоламинов является тирозин, который с помощью ряда соединений превращается в адреналин (схема 34).

Схема 34. Синтез катехоламинов.

Вначале происходит гидроксилирование тирозина с образованием дигидроксифенилаланина (ДОФА). Он является предшественником катехоламинов, не обладает биологической активностью, но легко проникает через гематоэнцефалический барьер. Образование ДОФА происходит при участии фермента тирозингидроксилазы (а), которая выявляется в мозговом слое надпочечника, ЦНС и тканях, иннервируемых симпатический нервной системой. Активность тирозингидроксилазы и гидроксилирование тирозина являются основным звеном в биосинтезе катехоламинов, лимитирующим его скорость.

Накопление фенилаланина и его метаболитов угнетает активность тирозингидроксилазы, поэтому при фенилкетонурии синтез катехоламинов снижен. Посредством ДОФА-декарбоксилазы (б) ДОФА превращается в дегидроксифенилэтиламин (дофамин), который при участии дофамин-b-оксидазы (в) и норадреналин-N-метилтрансферазы (г) превращается в норадреналин, а затем в адреналин.

Установлено, что гидроксилирование тирозина с образованием ДОФА происходит в митохондриях хромаффинных клеток. Декарбоксилирование ДОФА и образование дофамина осуществляется в цитозоле клетки, где в растворенном виде присутствуют ДОФА-декарбоксилаза и другие ферменты, необходимые для этого этапа биосинтеза катехоламинов. Дофамин попадает в гранулы клеток или терминали аксонов и в присутствии дофамин-b-оксидазы превращается в норадреналин. Далее норадреналин снова выходит в цитоплазму и, превратившись в адреналин, повторно поглощается гранулами.

Катехоламины в хромаффинных клетках локализуются в гранулах, которые служат резервуаром, местом их биосинтеза и высвобождения. Кроме катехоламинов, гранулы содержат липиды, нуклеотиды (АТФ), белки, ионы Са2+ и Mg2+. В гранулах мозгового слоя надпочечников содержится 80% адреналина и 20% норадреналина. Секреция катехоламинов осуществляется путем экзоцитоза; при этом содержание гранул “изливается” во внеклеточное пространство.

Гранулы выполняют следующие специфические функции: поглощают дофамин из цитозоля клетки и конвертируют его в норадреналин, являются местом “складирования” адреналина и норадреналина, предохраняют их от воздействия моноаминоксидазы и разрушения и в ответ на нервную стимуляцию высвобождают катехоламины в крови. При этом гранулы функционируют как тканевые буферные системы для катехоламинов; эту их функцию можно сравнить с функцией транспортных белков сыворотки крови для тироидных гормонов и кортикостероидов.

В окончаниях симпатических нервных волокон выявляются гранулы, содержащие лишь норадреналин. Аналогичные гранулы обнаружены и в ганглиях симпатической нервной системы. Норадреналин выявлен в головном и спинном мозге, наибольшая концентрация – в области гипоталамуса. Содержание адреналина в этих областях незначительно. Около 80% содержащегося здесь норадреналина локализуется в синаптосомах и нервных окончаниях. Следует отметить, что около 50% катехоламинов, содержащихся в области гипоталамуса и других базальных ганглиях головного мозга, приходится на дофамин.

Реферат опубликован: 11/04/2005 (13159 прочтено)