Изменение частоты сердечных сокращений и артериального давления

Страница: 4/5

Суммарный показатель интенсивности кровообращения – минутный объем – по сравнению с состоянием покоя (около 5 л/мин) возрастает до 25 л/мин, а у хорошо тренированных людей может достигать даже 30-40 л крови в минуту. Несмотря на значительность этого прироста, он все же уступает масштабам сдвигов в дыхательной системе.

При статической работе или же не происходит изменения МОК, или же происходит незначительное его увеличение. При этом также практически не увеличивается потребление кислорода, а после окончания статической нагрузки – резко растет вместе с увеличением МОК. Это явление, описанное в 20-х гг., получило название «феномен Лингарда», по имени описавшего его автора. Последующие исследования этого явления показали, что сразу же после конца статической работы МОК кратковременно уменьшается, по видимому, за счет увеличения емкости кровяного русла, сдавливавшегося мышцами и уменьшения венозного возврата.

А.Н. Меделяновский предложил качественно новый метод исследования влияния работ различной мощности на изменение артериального давления. До этого времени все методы основывались на оценке физической работоспособности на основании исследования одного или двух физиологических показателей. А.Н. Меделяновский отметил – «… бесспорно, что такая сложноорганизованная биологическая система как организм человека обладает целым рядом адаптаций к физической нагрузке, которые у разных лиц могут быть развиты в различной степени и остаются неучтенными при одноплановой оценке состояния человека».[10] В основе метода А.Н. Меделяновского лежат представления академика П.К. Анохина об организме, как саморегулирующейся иерархии функциональных систем, полезным приспособительным результатом которой является поддержание фоновых физиологических показателей на уровне, адекватном обменным потребностям организма, и представления о явлении оптимума в физиологических процессах. Так, например, у людей со сниженными функциональными возможностями сердца эффективность функционирования системы обеспечивается усилением функционирования органов дыхания и снижением периферического сопротивления сосудов. Поэтому для характеристики эффективности системы предлагается использовать синтетический показатель, основанный на произведении минутного объема дыхания (МОД), минутного объема кровообращения (МОК) и периферического сопротивления сосудов (ПСС). Учитывая, что величина МОК может быть выражена через показатели сердечного выброса (СВ) и частоты сердечных сокращений (ЧС), а ПСС – через величину артериального давления (АД), это выражение может быть преобразовано в ряд других. В частности предложены следующие расчетные показатели:

ИПЭ = VO2 / АДср, где

ИПЭ – интегральный показатель эффективности системы, а

VO2 определяется по содержанию кислорода в выдыхаемом воздухе. Зная эти два показателя можно вывести из формулы величину среднего артериального давления при заданном уровне интегрального показателя эффективности системы и потребления кислорода:

АДср = VO2 / ИПЭ

Существует и другая формула, определяющая интегральный показатель системы через объем кислорода в выдыхаемом воздухе, среднее артериальное давление, минутный объем кровообращения, периферическое сопротивление сосудов и минутный объем дыхания. Формула выглядит следующим образом:

ИПС = VO2 · (АДср · МОК · ПСС)/ МОД

Следует отметить, что при оптимальном уровне работы системы показатель ИПС имеет минимальное значение.

Итак, методика использования системно-количественного анализа работоспособности заключается в следующем: у испытуемых регистрируют следующие параметры: артериальное давление, содержание кислорода в выдыхаемом воздухе, а при наличии технической возможности также реоплетизмограмму, ЭКГ, пневмограмму, с помощью которых можно зарегистрировать МОД, ЧСС, СВ, ЧД (частоту дыхания). Испытуемому предлагают выполнить тестовые нагрузки (2 тестовые нагрузки с продолжительностью по 5 минут или непрерывно возрастающую нагрузку с продолжительностью каждой ступени мощности по 3 мин. Высоту ступени предлагается установить равной 3,1 Вт/кг массы тела. При каждом новом уровне нагрузки рассчитывается величина ИПЭ.

Первоначально величина показателя уменьшается и удерживается некоторое время на постоянном уровне (см. Приложение 3). Величину нагрузки (в Вт), при которой ИПЭ достигает минимального значения и считают критерием физической работоспособности.

Часть 3. Электрокардиографические показатели у конькобежцев и гимнастов при разных уровнях физической нагрузки.

«Электрокардиографические исследования приобрели всеобщее признание и стали обязательными в комплексной методике врачебного контроля за спортсменами. Однако в оценке ряде электрокардиографических изменений у спортсменов есть спорные моменты: одни исследователи отклонения от клинических нормативов считают вариантом нормы, другие относят к числу предпатологических и патологических изменений».[11] Обобщая результаты электрокардиографических исследований на нагрузку, следует сказать, что наиболее благоприятная реакция отмечалась у юных спортсменов без каких-либо ЭКГ изменений в покое. Физиологическая реакция на нагрузочное тестирование наблюдалась у юных конькобежцев с такими отклонениями от клинических нормативов, как разброс длительности межсистолических интервалов свыше 0,30 сек., синусовая бракардия, миграция водителя суправентрикулярного ритма, частичная блокада правой ножки пучка Гиса, отрицательные зубцы Т и двухфазные R в правых грудных отведениях, постоянные высокие зубцы Т в грудных отведениях со сглаженностью различий в высоте при отсутствии других ЭКГ отклонений.

В.К. Тулаев в своей статье сетует на то, что «большинство авторов в исследованиях на гимнастах применяли электрокардиографическую методику в основном для выявления физиологических и патологических изменений в сердце, в то время как работ, где использовали бы показатели ЭКГ для определения тренированности и влияние физических нагрузок на изменение частоты сердечных сокращений и артериального давления, мы не нашли».[12] Проведенный анализ ЭКГ показал, что в покое изучаемые величины у гимнастов 15-16 лет разной квалификации существенно не отличались, внутрисердечное проведение и электрическая диастола в обеих группах незначительно увеличилась после статической пробы. Кроме того, в группе в группе с высокой тренированностью отмечались несколько большие величины сердечной систолы и длительности сердечного цикла, а у гимнастов с низкой тренированностью наблюдалось небольшое увеличение времени предсреднежелудочкового проведения.

ЗАКЛЮЧЕНИЕ

Итак, влияние физической нагрузки четко прослеживается как в изменениях системных показателей, так и в региональных процессах кровообращения. Основными направлениями сдвигов центральной гемодинамики является повышение артериального давления, увеличение минутного объема кровотока, снижение периферического сопротивления сосудов, возрастание частоты сердечных сокращений и величины ударного объема сердца (сердечный выброс). Однако характер выполняемой работы сильно влияет на как на интенсивность этих сдвигов, так и на состояние отдельных показателей.

Влияние физической нагрузки на деятельность сердца, прежде всего выражается, в увеличении частоты сердченых сокращений. Изменяется также сокращение сердечной мышцы: происходит укорочение всех фаз сердечного цикла, возрастает энергия мышечного сокращения. В результате этих перестроек увеличивается объем выбрасываемой сердцем крови за один цикл и за минуту. Так, с 70 мл крови в покое сердечный выброс возрастет до 150-200 мл при физической нагрузке.

Основным механизмом активизации частоты сердечных сокращений при физической работе, считают снижение тонуса блуждающих нервов и увеличение симпатических влияний на сердце. Интересно отметить, что снижение вагусного тонуса происходит несмотря на повышение артериального давления в магистральных сосудах и, следовательно, усиление потока афферентных сигналов от баррорецепторов. По-видимому, во время работы происходит появление обуздывающих рефлекторных воздействий этих сосудистых рефлексогенных зон.

Увеличению сократимости сердца и возрастанию сердечного выброса кроме центральных нейрогенных влияний содействует также увеличение объема притекающей венозной крови.

Список использованной литературы.

Арчнин Н.И., Недвецкая Г.И. Внутримышечное периферическое сердце. – Минск,1974.

Асафова Н.Н. Состояние вегетативных функций при физической работе и работоспособность человека. – Горький,1989.

Виноградов М.И. Физиология трудовых процессов. – М.,1966.

Карпман В.Л., Белоцерковский З.Б., Гудкова И.А. Тестирование в спортивной медицине. – М.,1988.

Меделяновский А.Н. Системно-количесвенный анализ работоспособности. – М.,1980.

Мустафина Т.К., Кнорр В.И., Дунаева З.К., Кудрина Н.И. К вопросу оценки некоторых электорокардиографических изменений у юных конькобежцев. // Функциональные изменения в организме при мышечной деятельности. – Алма-Ата,1987.

Решетюк А.Л. Физиологический аспект ускорения. // ЭКО,1988. - № 6.

Тулаев В.К. Электрокардиографические показатели в соревновательном периоде у гимнастов (15-16 лет). // Функциональные изменения в организме при мышечной деятельности. – Алма-Ата,1987.

Фарфель В.С. Управление движениями в спорте. – М.,1975.

Физиология кровообращения. Регуляция кровообращения. – Л,1986.

Приложение 1

Изменение минутного объема крови (Q), систолического объема (Qs) и частоты сердечных сокращений (f) при увеличении мышечной работы (N)

Реферат опубликован: 11/04/2005 (18387 прочтено)