Пространственная ориентация живых организмов посредством

Страница: 2/5

Глаз каракатицы Sepia (рис. 2в) очень похож на глаз позвоночных. В нем находятся ресничные мышцы, кото­рые могут менять форму хрусталика, и радужка, регулирующая, как диафрагма, количество падающего на сетчатку света.

Глаза позвоночных, хорошим приме­ром которых служит глаз человека, по­строены по единому плану, хотя и у них отмечается некоторая экологическая адаптация. На рис. 3 показан горизонтальный разрез человеческого глаза. Он окружен плотной оболочкой – склерой. прозрачной в перед­ней части глаза, где она называется рого­вицей. Непосредственно изнутри роговица покрыта черной выстилкой – сосудистой оболочкой, которая снижает пропускаю­щую и отражающую способность боко­вых частей глаза. Сосудистая оболочка выстлана изнутри светочувствительной сетчаткой, которую мы более детально рассмотрим позднее. Спереди сосудистая оболочка и сетчатка отсутствуют. Здесь находится крупный хрусталик, делящий глаз на переднюю и заднюю камеры, запол­ненные соответственно водянистой влагой и стекловидным телом. Перед хрустали­ком расположена радужка – мышечная диафрагма с отверстием, называемым зрачком. Радужка регулирует размеры зрачка и тем самым количество света, попадающее в глаз. Хрусталик окружен ресничной мышцей, которая изменяет его форму. При сокращении мышцы хруста­лик становится более выпуклым, фокуси­руя на сетчатке изображение предметов, рассматриваемых вблизи. При расслабле­нии мышцы хрусталик уплощается и в фокус попадают более отдаленные пред­меты.

Рис. 2в. Глаз каракатицы Sepia, сходный с глазом позвоночных


Рис. 3. Разрез глаза человека.

Рис. 2г. Инвертированный глаз гребешка Pecten.

У позвоночных в отличие от таких головоногих моллюсков, как каракатица, сетчатка имеет инвертированное, т.е. пе­ревернутое, строение. Фоторецепторы ле­жат у сосудистой оболочки, и свет попа­дает на них, пройдя через слой нейронов главным образом ганглиозных и биполяр­ных клеток. Ганглиозные клетки примы­кают к стекловидному телу, и их аксоны проходят по внутренней поверхности сет­чатки к слепому пятну, где они образуют зрительный нерв и выходят из глаза. Биполярные клетки – это нейроны, соеди­няющие ганглиозные клетки с фоторецеп­торами.

Фоторецепторы делятся на два типа – палочки и колбочки. Палочки, более вы­тянутые по сравнению с колбочками, очень чувствительны к слабому освеще­нию и обладают только одним типом фотопигмента - родопсином. Поэтому па­лочковое зрение бесцветное. Оно также отличается малой разрешающей способ­ностью (остротой), поскольку много па­лочек соединено только с одной ганглиозной клеткой. То, что одно волокно зри­тельного нерва получает информацию от многих палочек, повышает чувствитель­ность в ущерб остроте. Палочки преобла­дают у ночных видов, для которых важнее первое свойство.

Колбочки наиболее чувствительны к сильному освещению и обеспечивают ост­рое зрение, так как с каждой ганглиозной клеткой связано лишь небольшое их чис­ло. Они могут быть разных типов, обладая специализированными фотопигментами. поглощающими свет в различных час­тях спектра. Таким образом, колбочки служат основой цветового зрения. Они наиболее чувствительны к тем длинам волн. которые сильнее всего поглощаются их фотопигментами. Зрение называют мо­нохроматическим, если активен лишь один фотопигмент, например в сумерках у человека, когда работают только палочки (рис. 4).

Рис 4. Типичные рецепторные механизмы при разных типах цветового зрения. (По материалам The Oxford Companion to Animal Behavior, 1981).

Дихроматическим зрение бывает при наличии двух активных фотопигментов, как у серой белки (Sciurus carolinensis) (рис. 4). Каждая длина волны стимулирует оба типа колбочек, но в разной степени в соответствии с их относительной чувстви­тельностью в этой части спектра. Если мозг может распознавать такую разницу, животное различает длину волны света по его интенсивности. Однако эти определен­ные отношения возбудимости характерны более чем для одной части спектра, поэто­му некоторые длины волн воспринимают­ся одинаково. Это происходит также при особых формах цветовой слепоты у чело­века. Длина волны, одинаково возбуж­дающая оба типа колбочек (в области пересечения кривых поглощения), воспри­нимается как белый цвет и называется «нейтральной точкой» спектра. Наличие ее показано в поведенческих опытах у серой белки (Muntz, 1981).

Такое смешение меньше выражено в зрительных системах с тремя типами цве­товых рецепторов или при трихроматическом зрении (рис. 4), известном у многих видов, в том числе у человека. Однако некоторое смешение происходит и здесь: можно, например, вызвать впечат­ление любого цвета посредством разных сочетаний трех монохроматических со­ставляющих, специально подобранных по интенсивности и насыщенности. Без этого было бы невозможно зрительное восприя­тие цветной фотографии и цветного теле­видения.

У многих птиц и рептилий обнаружено больше трех типов цветовых рецепторов. Кроме различных фотопигментов, кол­бочки этих животных часто содержат ок­рашенные капельки масла, которые дейст­вуют как фильтры и в сочетании с фото­пигментом определяют спектральную чувствительность рецептора. Эти капельки обычно не распределены по сетчатке равномерно, а сосредоточены в определенных ее частях.

В 1825 г. чешский физиолог Ян Пуркинье заметил, что красные цвета кажутся ярче синих днем, но с наступлением суме­рек их окраска блекнет раньше, чем у синих. Как показал в 1866 г. Шульц, это изменение спектральной чувствительнос­ти глаза, названное сдвигом Пуркинье, объясняется переходом от колбочкового зрения к палочковому во время темповой адаптации. Это изменение чувствитель­ности при темновой адаптации можно измерить у человека, определяя порог об­наружения едва видимого света через раз­ные промежутки времени пребывания в темной комнате. По мере адаптации этот порог постепенно снижается.

Долю колбочкового зрения можно определить, направляя очень сла­бый свет на центральную ямку на сетчат­ке, в которой палочки отсутствуют. Долю участия в восприятии палочек определяют у «палочковых монохроматов», т. е. у ред­ких индивидуумов, лишенных колбочек. Палочки гораздо чувствительнее к свету, чем кол­бочки, но содержат только один фотопиг­мент-родопсин, максимальная чувстви­тельность которого лежит в синей части спектра. Поэтому синие предметы кажут­ся в сумерках ярче предметов других цветов.

Диапазон интенсивности света, воспри­нимаемого глазами позвоночных, огро­мен – они чувствительны к значениям ос­вещенности, различающимся в миллиард раз. Это достигается разными механизма­ми, особыми для каждого вида. У многих рыб, амфибий, рептилий и птиц пигмент сосудистой оболочки концентрируется между наружными сегментами рецепто­ров при сильном освещении и оттягивает­ся назад при его ослаблении. У этих жи­вотных наружные сегменты колбочек так­же подвижны. У некоторых рыб и амфи­бий в противоположном направлении движутся и наружные сегменты палочек. Количество света, достигающего сетчат­ки, регулируется сокращением зрачка. Этот рефлекс хорошо развит у угрей и камбал, ночных рептилий, птиц и млеко­питающих (Prosser, 1973).


ФОТОРЕЦЕПТОРЫ НАСЕКОМЫХ

Реферат опубликован: 15/06/2005 (15370 прочтено)