Химико-фармакологическое исследование лопуха войлочного

Страница: 5/8

Вывод: жидкие экстракты на 25, 40, 70 % этаноле удовлетворяют требованиям ГФ XI.

2.3. Исследования противовоспалительных свойств сухих экстрактов листьев и корней, полученных на 25 %, 40 %, 70 % этаноле, сухого водного раствора извлеченног из листьев лопуха войлочного

2.3.1. Характеристика воспалительного процесса

Воспаление является защитно-приспособительной реакцией организма при различных повреждениях. Однако в ряде случаев восстановительные процессы переходят из нормальных в патологические и участвуют в формировании многих заболеваний. Воспалительный процесс - результат взаимодействия флогогенного начала и макроорганизма. Участие последнего зависит прежде всего от его реактивности, которая определяется состоянием регуляторных систем как высших, дистальных - нервной, эндокринной, иммунной, так и местных - физиологически активных веществ, выступающих в очаге воспаления в качестве медиаторов и модуляторов воспаления [Дыгай А.М., Клименко Н.А., 1992]. Большинство авторов в развитии воспаления выделяют следующие классические стадии: 1) повреждение тканей и клеток; 2) выделения медиаторов и реакция микроциркуляторного русла (сосудистая фаза); 3) проявления повышенной проницаемости - экссудации, миграции клеточных элементов (сосудисто-клеточная фаза); 4) пролиферация с последующей репарацией (фаза реконструкции) . При воздействии химического и физического раздражителя вслед за разрушением тканей (первичной альтерацией) происходит экссудация, затем - пролиферация и репарация, тогда как при действии биологических агентов процесс начинается чаще с экссудации, далее наступает расплавление тканей (вторичная альтерация) с последующей пролиферацией и репарацией. Вид воспаления зависит от причины, вызывавшей его, особенностей пораженной ткани, реактивности организма и др. На модели каррагенинового воспаления наблюдается три фазы выделения медиаторов: в первую фазу высвобождается гистамин и серотонин, во вторую - кинины. Простагландины являются посредником поздней фазы воспаления, развивающегося при каррагениновом отеке через 3 часа, максимум концентрации ПГЕ2 - через 12 - 24 часа. Активация этой третьей фазы воспаления зависит от включения в процесс системы комплемента [Чернух А.М., 1979]. Защитные реакции регулируются и нервно - гуморальными механизмами. В результате интеграции каскада реакций возникает комплекс сосудистых и клеточных реакций, характеризующих острое воспаление. При последующей ликвидации патогенетического агента развивается заключительная фаза воспалительного процесса - репарация, которая заканчивается заживлением дефектов ткани и прекращением реакций. Восстановительную (регенерационную) стадию воспаления лучше всего рассмотреть на модели заживления раневого повреждения, причем асептическая рана, в случае заживления первичным натяжением, имеет менее выраженную воспалительную реакцию, чем при заживлении вторичным натяжением [Фенчин К.М., 1979]. Для последнего характерно заживление раны вследствие выполнения дефекта грануляционной тканью, которая развивается в условиях открытого дефекта, она всегда соприкасается со внешней средой, будучи долго не покрытой эпителием, в то время как молодая соединительная ткань при первичном натяжении развивается под струпом или в условиях зашитой раны [Есипова И.К., 1966]. Если организм не способен удалить источник раздражения, то увеличивается выход в очаг воспаления полиморфноядерных лейкоцитов и выделение из них большого количества лизосомальных энзимов, вызывающих деструкцию тканей и развитие неспецифического хронического воспаления [Тринус Ф. П. и др., 1987]. В общем хроническое воспаление отличается тканевым ответом, характерным своей длительностью, развитием моноцитарного инфильтрата и пролиферацией соединительной ткани. Различают первичное хроническое воспаление и вторичное. Если повреждающий агент, вызывающий воспаление продолжает находиться в тканях, то развивается гранулема (гранулематозное воспаление). Развитие гранулемы является фазным: а) вокруг возбудителя образуется инфильтрат юных мононуклеарных фагоцитов; б) далее происходит созревание и скопление (агрегация) этих клеток с образованием зрелой гранулемы; в) дальнейшее созревание с формированием эпителиоидной гранулемы [Чернух А.М., 1979]. Развитие гранулемы происходит путем экссудации и пролиферации. Уже к 7 дням (а иногда и раньше) организуется зрелая гранулема (типа чужеродного тела). Существенное значение в патогенезе хронического воспаления принадлежит взаимодействию макрофагов и компонентов комплемента. На ранних этапах формирования гранулемы ведущая роль отводится метаболизму сульфатированных гликозаминогликанов.

Таким образом, воспаление - сложный многоступенчатый процесс, представляющий собой динамический каскад биологических причинно - следственных явлений, проходящих в своем развитии через ряд стадий и фаз. Фармакодинамику противовоспалительных средств необходимо исследовать с учетом фазности воспалительных изменений и значения тех или иных процессов в развитии этих фаз [Тринус Ф.П. и др., 1987].

2.3.2 Материалы и методы исследования

Для исследования были использованы сухие экстракты и сухие водные извлечения, полученные ранее другими дипломниками.

Опыты проводили на белых неинбредных мышах массой 20 - 25 гр. и крысах линии Wistar массой 250 - 300 гр., полученных из коллекционного фонда НИЛ экспериментального биомедицинского моделирования ТНЦ СО РАМН (сертификат имеется).

Острое асептическое воспаление вызывали введением под плантарный апоневроз левой задней лапки 1 % раствор каррагенина в объеме 0.05 мл мышам и 0.1 крысам . Величину отека определяли по разности масс воспаленной и невоспаленной лап животного, процент прироста рассчитывали по формуле:

масса больной __ масса здоровой

конечности конечности

_____________________________________ х 100%

масса здоровой конечности

Репаративная способность препаратов изучена на модели заживления кожного повреждения [Фенчин К.М., 1979]. На депилированном участке кожи спины у мышей под легким эфирным наркозом вырезали лоскут кожи размером 10 x 10 мм. Для моделирования более длительного заживления струп регулярно (через сутки) снимали. О ходе заживления судили по среднему диаметру раны и срокам полной грануляции и эпителизации раневого дефекта. Укорочение срока заживления ран расчитывали в процентах по формуле:

время полного заживления __ время полного заживления

ран в контроле ран в опыте

__________________________________________________________ х 100%

время полного заживления ран в контроле

Пролиферативное хроническое воспаление исследовали на модели "ватной" гранулемы. Стерильный ватный тампон (13 мг) имплантировали с помощью иглы (А1 -20 х 40 - 1 17 И25) крысам под кожу спины между лопатками. Исследуемые препараты вводились ежедневно со дня трансплантации в течение 7 дней. На 8 сутки животных забивали, гранулема вычленялась, взвешивалась в сыром и затем высушенном виде.

Умерщвление животных производили методом дислокации цервикального отдела позвоночника. Результаты исследований обрабатывались методом непараметрической статистики Вилкоксона - Манна - Уитни.

2.3.3 Результаты исследования

Изучение противовоспалительных и ранозаживляющих свойств растительных средств из лопуха войлочного проводили в условиях экспериментальных моделей патологических состояний у мышей и крыс. В работе воспроизводили острое асептическое воспаление (каррагениновое), хроническое пролиферативное ("ватная" гранулема) и регенерация кожного повреждения.

В первой серии экспериментов регенеративную активность препаратов исследовали на модели кожного "лоскута" у мышей. Для моделирования длительного заживления струпы периодически снимали. В связи с этим раны заживляли вторичным натяжением, для которого характерно развитие грануляционной ткани [Фенчин К.М., 1979]. Беспородные мыши - самки, используемые в эксперименте, получали сухой экстракт корней 70, сухой экстракт корней 40, сухой экстракт корней 25, сухой экстракт листьев 70, сухой экстракт листьев 40, сухой экстракт листьев 25. Для сопоставления фармакологической активности все препараты вводились в одной дозе - 50 мг / кг в лечебном режиме: через час после нанесения кожного повреждения, затем ежедневно однократно до момента заживления. Растительные средства вводились внутрижелудочно (per os). Измерение раны проводили сразу же после снятия струпа, длительность наблюдения - 20 дней. У контрольных животных, которым вводилась дистиллированная вода, полное заживление ран наблюдали на 20 сутки (табл. 6, прилож.). Существенную активацию регенерации вызвал сухой экстракт листьев 25 - уже с 5 дня раны в 1.2 раза были меньше контрольных, а на 15 сутки - полное заживление у всех животных, т.е. на 28.6 % сокращались сроки регенерации. Аналогично и сухой экстракт корней 25 на 5 и 8 день достоверно снижал средний диаметр раны в 1.2 и 1.4 раза соответственно, но судя по срокам заживления процент ускорения репарации составил 9.6 % , как и в остальных исследуемых группах (кроме сухого экстракта листьев 70).

Во второй серии экспериментов было изучено влияние растительных препаратов на хроническое воспаление, для воспроизведения которого использовали модель "ватной" гранулемы. Исследуемые извлечения вводились в меньшей дозе (25 мг / кг), с учетом коэффициента пересчета дозировки с мышей на крыс. Фитопрепараты и препарат сравнения - индометацин получали крысы -самки линии Wistar в лечебном режиме в течение 7 дней. Индометацин в исследуемой дозе обладал более выраженной антиэкссудативной активностью (37 % торможения), но не оказывал достоверного влияния на развитие грануляционной ткани (табл. 7, прилож.). Сухой экстракт корней 70 вызывал уменьшение массы сухого компонента на 21 % и на 26 % снижал содержание экссудата. Остальные извлечения из лопуха войлочного не оказали статистически значимого противовоспалительного эффекта на этой экспериментальной модели, хотя тенденция обнаружена у сухого экстракта корней 40 и сухого экстракта листьев 25.

Дальнейшие исследования проведены с препаратами, полученными на основе листьев лопуха. На модели острого асептического воспаления, вызванного каррагенином сравнивали противовоспалительное действие спиртовых извлечений (сухого экстракта листьев 40, сухого экстракта листьев 25) и сухого водного извлечения из листьев. Препараты вводились в широком диапазоне доз: 100 мг / кг; 50 мг / кг; 10 мг / кг; 1 мг / кг в превентивном режиме курсом в течение 5 дней, в последний день через час после препарата вводился каррагенин. Наилучшее противоотечное действие на этой модели оказал сухой экстракт листьев 40, т. к. три дозы препарата оказались эффективными (табл. 8, прилож.) наибольший противоэкссудативный эффект оказал этот препарат при введении его в дозе 50 мг / кг - 37 % торможения прироста веса лапки в сравнении с контрольными животными. Несколько ниже эффект при введении его в дозах 10 и 1 мг / кг - 25 и 26 % соответственно. Волнообразный характер противовоспалительных эффектов у сухого экстракта листьев 25 на 29 % снижался отек под действием препарата в дозах 100 и 10 мг / кг; отсутствие эффекта в дозах 50 и 1 мг / кг. Сухое водное извлечение из листьев на этой патологической модели не проявило противовоспалительной активности.

Таким образом, проведенные скрининговые исследования говорят о наличии фармакологической активности у спиртовых извлечений из лопуха войлочного. Неоднозначность эффектов говорит о их высокой избирательной активности зависящей от концентрации экстрагента и вида сырья. Так сухой экстракт корней 70 оказался более эффективным при хроническом воспалении, а сухой экстракт листьев 25 и сухой экстракт листьев 40 - при остром асептическом воспалении. Наилучший стимулятор репаративной регенерации - сухой экстракт листьев 25. Выявленная фармакологическая активность свидетельствует о перспективности данных препаратов и требует дальнейшего более углубленного их исследования.

Часть 3. Выделение сесквитерпеновых лактонов

3.1. Общая характеристика

К сесквитерпеновым лактонам относятся кислородосодержащие, производные сесквитерпеноидов, имеющие в своем составе 15 атомов углерода и 1 (реже 2) g - лактонный цикл, а также, как правило, кетонную, гидроксильную, эпоксидную или сложноэфирную группы. Наряду с этим известно незначительное количество лактонов, содержащих хлор, серу, азот. В последнее время выделены соединения, состоящие из 30 атомов углерода и получившие название дисесквитерпеноидов.

Долгое время сантонин (сесквитерпеновый лактон), выделенный из соцветий цитварной полыни Artеmisia cina Berg., являлся единственным представителем этой группы соединений

g - Сантонин(С15 Н20 О4)

С 1954 г., благодаря работам чешских ученых Ф. Шорм, В. Героута, число выделенных и изученных сесквитерпеновых лактонов стало быстро расти.

В настоящее время из растительных источникив выделено свыше 1200 лактонов различных типов. Указанный класс терпеноидов усиленно изучают во многих странах мира в связи с широким спектром их биологического действия - антигельминтного, кардио - тонического, противовоспалительного, анальгезирующего, противомалярийного, противоопухолевого и др.

Первым сесквитерпсновым лактоном, применявшимся как антигельминтное средство, был сантонин. Аналогичным действием обладает также геленин - сумма сесквитерпеновых лактонов из девясила высокого Inula helenium L., который более эффективен, чем сантонин, в особенности в детской практике. Сесквитерпеновый лактон тауремизин оказывает возбуждающее действие на кору головного мозга, урежает ритм сердечных сокращений, мягко повышает артериальное давление, значительно усиливает сокращение мышцы сердца, несколько увеличивает диурез и применялся в официальной медицине. Матрицип и матрикарин обладают противовоспалительной активностью, что связано со способностью матрицина легко превращаться в хамазулен. Последний малотоксичен, активирует процессы грануляции и эпителизации ран. Арнифолин в опытах на животных обнаружил тонизирующее действие на гладкую мускулатуру матки.

Известно, что многие лактоны, содержащие экзоциклическую метиленовую группу, проявляют цитотоксическую активность, хотя это и не является обязательным условием указанного эффекта. Количество лактонов, для которых установлено противораковое действие, уже перевалило за 70. Большинство из них относится к гермакранолидам (костунолид, алатолид, партенолид, элафантин, кницин, элеганин и др.), гвайанолидам (дезацетоксиматрикарин,. артеглазины А и В, гросгеймин, цинаропикрин, амброзин, геленалин, пауцин и др.). Внедрение этих соединений в медицинскую практику тормозится их весьма высокой токсичностью. С другой стороны, описаны g - лактоны (например, гейгерин), стимулирующие процессы злокачественных новообразований. Установлена также антибактериальная и антипротозойная активность некоторых лактонов.

3.2. Распространение в растительном мире

Сесквитерпеновые лактоны широко распространены в природе и изучены в основном в высших растениях. Наиболее богатым является семейство Asteraceae (Compositae), в нем отличаются большим разнообразием содержащихся лактонов роды: Achillea, Acroptilon, Ambrosia, Artemisia, Helenium, Inula, Gaillardia, Matricaria, Saussurea. Из других семейств следует отметить Acanthaceae, Amarantaceae, Apiaceae (и его род Ferula), Aristolochiaceae, Canellaceae, Coriariaceae, Illiciaceae, Lauraceae, Lamiaceae (Labiatae), Magnoliaccae, Меnispermaceae, Polygoniaceae, Umbelliferae.

Из низших растений известны представители двух семейств, содержащих ' сескпитерпеновыс лактоны - Russulaceae и Frullaniaceae.

3.3. Локализация в растениях

Сесквитерпеповые лактоны могут накапливаться во всех органах растений, но большинство их выделено из надземной части.

Более редки случаи выделения лактонов из подземных частей растений. В частности, из корней соссюреи репейниковой (лопуховидной) Saussurea lappa Clarke - растения, широко используемого в народной и официальной.медицине стран Востока, получены костунолид, дегидрокостуслактон, дигидрокостуслактон, мокколактон, сауссуреалактон, 12 -метоксидигидрокостунолид. Сумма сесквитерпеновых лактонов, называемых алантоном, изолирована из корней и корневищ девясила высокого. Кроме того, выделены сесквнтерпеновые лактоны из корней рода Ferula.

3.4. Классификация

По строению углеродного скелета все известные сесквитерпеновые лактоны подразделяют на 24 основных типа. Наибольшее их количество относится к типам гермакрана (гермакранолиды), гвайана (гвайанолиды), амброзана (амброзанолиды) и эвдесмана (эвдесманолиды):

Гермакран Гермакрноолиды Гвайана Гвайанолиды

Амброзан Амброзанолиды Эвдесман Эвдесманолиды

По строению углеродного скелета лактоны можно классифицировать как ациклические, моноциклические, бициклические и трицикличсские. Некоторые из них могут быть эстерифицированы по спиртовому гидроксилу.

Изредка встречаются гликозидированные лактоны, которые могут быть эстерифицированы по гидроксилам сахарного компонента.

3.5. Физико - химические свойства

Большинство лактонов - это твердые кристаллические вещества, реже - маслообразные жидкости, нерастворимые в воде и растворимые в органических растворителях: этаноле, хлороформе, диэтиловом эфире, гексане. На растворимость лактонов в воде значительное влияние оказывают сопутствующие экстрактивные вещества, в присутствии которых она резко повышается. На этом основан один из простых методов выделения. В водных растворах щелочей сесквитерпеновые лактоны растворяются вследствие раскрытия лактонного кольца и образования солей соответствующих кислот.

Лактоны не имеют общих свойств, которые можно было бы использовать при их выделении. Наиболее. достоверная информация может быть получена при ИК - спектроскопии извлечения из растений. С этой целью выделение лактонов производит по методу К. С. Рыбалко, который основан на способности этих соединений растворяться в горячей воде в присутствии других экстрактивных веществ с последующим извлечением их хлороформом.

Не исключается возможность проверки наличия сесквитерпеновых лактонов методом ИК - спектроскопии в других извлечениях, полученных при обработке сырья петролейным эфиром, хлороформом, этилацетатом, ацетоном, этанолом.

Лактоны содержат g - лактонный цикл и поэтому имеют в ИК-спектре полосу поглощения лактонного карбонила в области 1740 - 1800 см - 1. Однако в области 1740 - 1750 см - 1 дает полосу поглощения также и карбонил d - лактона кумаринов, сложных эфиров и др. Но кумарины и ароматические сложные эфиры отличаются еще наличием двух полос в анализируемой области: 1680 - 1750 (С = О) и 1600 - 1620 см - 1 (ароматическая С = С). При отсутствии второй полосы в области 1600 - 1620 см - 1 полностью исключаются ароматические соединения, что указывает на возможность присутствия g - лактонов; наличие же полос поглощения в области 1760 - 1800 см - 1 при возможной второй полосе в области 1610 - 1660 см - 1 свидетельствует о присутствии g - лактонов, в молекуле которых имеются двойные связи в сопряжении; a - метилен - g - лактонный цикл.

При исследовании лактонов методом тонкослойной хроматографии в качестве адсорбентов используется оксид алюминия IV степени активности или силикагель. Подвижной фазой могут служить следующие системы растворителей: бензол - этанол (9 : 1), бензол - метанол (9 : 1), бензол - бутанол (9 : 1), гексан - этилацетат (85 : 5), хлороформ - метанол (7 : 3), хлороформ - этилацетат (9 : 1), петролейный эфир - хлороформ - этилацетат (2 : 2 : 1), петролейный эфир - бензол - хлороформ (5 : 4 : 1) и др.

Проявляют хроматограммы чаще всего 1% раствором перманганата калия в 1 % растворе серной кислоты. Однако данный проявитель не специфичен для лактонов, так как с его помощью могут быть определены н другие ненасыщенные вещества. Из других проявителей можно отметить 1 % раствор ванилина в концентрированной серной кислоте и серную кислоту при нагревании.

3.6. Методы выделения и разделения сесквитерпенопых лактонов

Унифицированного метода выделения сесквитерпеновых лактонов не существует. В каждом отдельном случае, необходим конкретный подход. Значительное количество лактонов выделено хлороформом с последующим разделением полученного экстракта после удаления растворителя колоночной хроматографией.

В некоторых случаях малополярные лактоны извлекают петролейным эфиром (гексаном или гептаном). Сильнополярные соединения можно извлекать полярным растворителем (ацетоном или спиртом), в этих случаях сырье рекомендуется обезжирить предварительной экстракцией петролейным эфиром. Ацетоновые или спиртовые извлечения после удаления растворителя и разбавления водой необходимо подвергнуть фракционированию растворителями с увеличивающейся полярностью (петролейным эфиром, хлороформом, ди-этиловым эфиром), в полученных извлечениях следует искать лактоны методом ИК - спектроскопии. Для хроматографической очистки и разделения g - лактонов путем колоночной хроматографии чаще всего используют нейтральный оксид алюминия (IV ст. акт., реже III) или силикагель. Лактоны элюируют растворителями с увеличивающейся полярностью или их смесями различных соотношениях [Рыбалко К. С., 1978].

3.7. Выделение сесквитерпеновых лактонов из листьев лопуха войлочного

300 грамм измельченных листьев лопуха помещают в колбу емкостью 5 л, добавляют 2 л хлороформа и нагревают на водяной бане с обратным холодильником в течении 1 часа. Хлороформное извлечение процеживают и процесс повторяют 3 раза.

После чего растворитель отгоняют, остаток трижды обрабатывают 60% - ным этанолом по 50 мл.

Полученную смесь фильтрованием через бумажный фильтр отделяют от осадка, разбавляют 100 мл воды и подвергают трехкратной экстракции хлороформом по 30 мл.

Хлороформное извлечение фильтруют через бумажный фильтр с безводным натрия сульфатом, растворитель отгоняют и в остатке получают порошок черного цвета.

3.8. Хроматографическое исследование суммы лактонов из листьев лопуха войлочного

Полученную смесь подвергают разделению колоночной хроматографией. Используются колонки (30 * 0.5) с 12 г силикагеля L 100 / 250 для хроматографии (Chemapol, Чехословакия), в качестве элюента применяется бензол с постоянным добавлением этилацетата, объем фракции составляет 50 мл, растворитель отгоняется.

Результаты колоночной хроматографии отражены в таблице № 9.

Таблица № 9

Результаты колоночной хроматографии хлороформного извлечения из листьев лопуха

№ фракций

Элюент

Внешний вид остатка

1

Бензол

Аморфный, слабо – желтый осадок

2

Бензол

Аморфный, слабо – желтый осадок

3

Бензол

Белый и слабо – желтый осадок

4

Бензол

Белый осадок

5

Бензол

Белый осадок с желтым оттенком

6

Бензол

Слабо – желтый осадок

7

Бензол

Слабо – желтый осадок

8

Бензол

Желтый осадок с зеленым оттенком

9

Бензол

Зеленый осадок

10

Бензол

Зеленый осадок

11

Бензол

Зеленый осадок

12

Бензол – этил ацетат(95 : 5)

13

Бензол – этил ацетат(95 : 5)

Зеленый осадок

14

Бензол – этил ацетат(95 : 5)

Зеленый осадок

15

Бензол – этил ацетат(95 : 5)

Желтый осадок

16

Бензол – этил ацетат(95 : 5)

Желтый осадок

17

Бензол – этил ацетат(95 : 5)

Желтый осадок

18

Бензол – этил ацетат(95 : 5)

Оранжевый осадок

19

Бензол – этилацетат(90 : 10)

Желтый осадок

20

Бензол – этилацетат(90 : 10)

Желтый осадок

21

Бензол – этилацетат(90 : 10)

Белый и слабо – желтый осадок

22

Бензол – этилацетат(90 : 10)

Белый и слабо – желтый осадок

23

Бензол – этилацетат(90 : 10)

Белый и слабо – желтый осадок

24

Бензол – этилацетат(85 : 15)

Белый и слабо – желтый осадок

25

Бензол – этилацетат(85 : 15)

Белый и слабо – желтый осадок

26

Бензол – этилацетат(85 : 15)

Белый и слабо – желтый осадок

27

Бензол – этилацетат(85 : 15)

Желтый осадок

28

Бензол – этилацетат(85 : 15)

Желтый осадок

29

Бензол – этилацетат(80 : 20)

Темно – зеленый осадок

30

Бензол – этилацетат(80 : 20)

Темно – зеленый осадок

31

Бензол – этилацетат(80 : 20)

Темно – зеленый осадок

32

Бензол – этилацетат(80 : 20)

Темно – зеленый осадок

33

Бензол – этилацетат(75 : 25)

Темно – желтый осадок

34

Бензол – этилацетат(75 : 25)

Желтый осадок

35

Бензол – этилацетат(75 : 25)

Желтый осадок

36

Бензол – этилацетат(70 : 30)

Желтый осадок

37

Бензол – этилацетат(70 : 30)

Желтый осадок

38

Бензол – этилацетат(70 : 30)

Темно – желтый осадок

39

Бензол – этилацетат(70 : 30)

Темно – желтый осадок

40

Бензол – этилацетат(70 : 30)

Темно – желтый осадок

41

Бензол – этилацетат(70 : 30)

Белый и слабо – желтый осадок

42

Бензол – этилацетат(70 : 30)

Белый осадок

43

Бензол – этилацетат(65 : 35)

Белый осадок

44

Бензол – этилацетат(65 : 35)

Белый и слабо – желтый осадок

45

Бензол – этилацетат(65 : 35)

Желтый осадок

46

Бензол – этилацетат(65 : 35)

Белый и слабо – желтый осадок

47

Бензол – этилацетат(65 : 35)

Белый и слабо – желтый осадок

48

Бензол - этилацетат(65 : 35)

Белый осадок

Реферат опубликован: 16/06/2005 (14994 прочтено)