Страница: 2/7
Существенный прогресс в изучении последовательности синтеза ДНК по длине каждой хромосомы человека в норме, ее взаимосвязи с другими характеристиками хромосомной организации, ее состояния в случаях численных или структурных изменений в хромосомном наборе происходит в настоящее время благодаря использованию в качестве предшественника синтеза ДНК аналога тимидина — 5-бромдезоксиуридина. Ослабленная способность к окрашиванию участков хромосомы, включивших этот предшественник, вооружила цитогенетиков точным методом изучения хронологии хромосомной репродукции, возможности которого лимитируются лишь разрешающей способностью световой микроскопии. Репликационная структура всех хромосом человека выявляется с предельной ясностью, и она может быть описана в четких морфологических терминах.
Каждая хромосома состоит из участков, реплицирующихся в разное время. Имеется четкое чередование районов с ранней и поздней репликацией. В метафазной хромосоме
такие участки хорошо различимы с помощью светового микроскопа. Специфичность репликационной структуры каждой хромосомы складывается из индивидуальности размеров, числа и взаимного расположения различающихся хромосомных районов (рис. 9).
В отличие от изложенных выше двух феноменов неравномерного окрашивания хромосом по длине, вызванного включением в ДНК 5-бромдезоксиуридина, под дифференциальной окрашиваемостью хромосом подразумевается способность к избирательному окрашиванию по длине хромосомы, не модифицированной прижизненно какими-либо воздействиями. Дифференциальное окрашивание хромосом в этом случае обеспечивается сравнительно простыми температурно-солевыми воздействиями на фиксированную хромосому.
Важно отметить, что при всем разнообразии подобных обработок хромосомных препаратов после фиксации и применяемых флуорохромных или нефлуоресцирующих красителей выявляемая линейная неоднородность хромосомы всегда одна и та же. Ее рисунок меняется только в зависимости от степени уплотненности хромосомы: в более длинных, слабее сокращенных хромосомах становится заметной дальнейшая неоднородность тех сегментов, которые выглядели гомогенно окрашенными в сильно конденсированных хромосомах. Дифференциальное окрашивание может наблюдаться либо по всей длине хромосомы (Q-, G- и R-сегменты), либо в ее центромерном районе (С-сегменты).
Наиболее ясное представление о рисунке дифференциального окрашивания хромосом по всей длине можно получить при окраске препаратов по G-методике, используя краситель Гимзы (рис. 10). На таких препаратах хромосомы выглядят поперечно исчерченными, по-разному окрашенными сегментами («banding»). Рисунок каждой пары хромосом является специфичным для нее. Размеры сегментов неодинаковые. В мелких хромосомах групп F и G рисунок образуется единичными сегментами, в крупных хромосомах их много. Общее количество окрашенных и неокрашенных сегментов в нормальном хромосомном наборе средней степени конденсации, в соответствии с Парижской номенклатурой, равно 322. В прометафазных хромосомах их число увеличивается до 1000 и более.
На Парижской конференции по номенклатуре в цитогенетике человека была разработана и в настоящее время вошла в практику цитогенетического анализа система обозначения сегментов нормальных хромосом и хромосом, подвергшихся тем или иным структурным перестройкам (Paris Conference, 1971). На рис. 11 приведен пример этой системы для аутосомы 1.
Независимо от того, как решается вопрос о природе дифференциальной окрашиваемости хромосом, основанные на этом феномене цитологические карты имеют исключительное значение для развития цитогенетики человека. С их помощью удается отнести генетические маркеры не просто к тому или иному хромосомному плечу, а к определенному району хромосомы. В медицинской цитогенетике стало реальным выявление происхождения аномальных хромосом вплоть до точного описания районов.
Второй вид дифференциального окрашивания хромосом вскрывает специфичность околоцентромерных районов в хромосомах человека. В разных хромосомах размеры С-сегментов разные, они особенно велики в аутосомах 1, 9 и 16. Однако идентифицировать по этой окраске сходные по величине и форме хромосомы не удается. В Y-хромосоме С-хроматин локализуется в дистальной части длинного плеча. В одной и той же хромосоме у разных индивидов его содержание может различаться.
Глава 2. Мейотические хромосомы.
Мейоз объединяет серию различных процессов, в ходе которых первичные зародышевые клетки дифференцируются в зрелые половые клетки. В начале этой серии сперматогонии (оогонии) превращаются в первичные сперматоциты (ооциты). Центральным событием является первое мейотическое деление сперматоцита (ооцита), в ходе которого хромосомы испытывают особенно сложные специфические преобразования в период профазы. Первая мейотическая профаза разделяется, как известно, на пять стадий: лептотену, зиготену, пахитену, диплотену и диакинез. В отличие от митоза, профаза которого в цитогенетическом анализе практически не используется, профазные хромосомы первого мейотического деления представляют очень большой интерес для цитоге-нетики человека. Метафазные хромосомы первого мейотического деления, являющиеся бивалентами гомологичных хромосом, представляют собой менее дифференцированные структуры по сравнению с метафазными митотическими хромосомами. Хромосомы второго мейотического деления почти не используются в цитогенетике человека.
Протекание мейоза в мужском и женском организме значительно различается в нескольких отношениях: период онтогенеза, продолжительность отдельных фаз, морфология митотических преобразований.
У мужчин мейотические деления начинаются в период полового созревания и протекают непрерывно на протяжении всего последующего половозрелого состояния. Этот процесс в отличие от женского мейоза не носит циклического характера. В семенниках одновременно созревает большое количество гамет, поэтому гонады половозрелого мужчины могут служить источником мейотически делящихся клеток в любой момент. На хромосомных препаратах одновременно удается видеть различные мейотические фигуры, от сперматогониальных метафаз до ме-тафаз второго мейотического деления. Продолжительность преобразований от сперматогоний до сперматозоидов занимает около 8—9 нед. Длительность отдельных стадий весьма различна, поэтому клетки разных стадий встречаются с неодинаковой частотой. Наиболее важные для цитогене-тического анализа стадии пахитены и диакинеза обычно представлены достаточным числом клеток.[3]
В женском организме мейоз протекает в два этапа, разделенных большим промежутком времени. Первый этап, включающий формирование оогоний и прохождение первого мейотического деления, проходит в эмбриональных яичниках. К моменту рождения девочки в яичниках все оогоний дифференцированы в ооциты, а последние прошли стадии лептотены — пахитены и остановились в стадии диплотены. Пребывание в этой стадии, получившей название диктиотены, продолжается весь постнатальный период жизни женщины. Последующее развитие клетки из стадии диктиотены в зрелую яйцеклетку происходит циклически, по одной клетке ежемесячно, и заканчивается овуляцией. Изложенное объясняет, почему ранние стадии первого мейотического деления у женщины можно анализировать лишь в раннем эмбриональном периоде, а последующие стадии в обычных условиях изучению недоступны.
Основные сведения по организации мейотических хромосом человека получены при изучении клеток семенников. Можно выделить следующие аспекты этих исследований.
Анализ линейной структуры индивидуальных хромосом. Характерной особенностью структуры мейотических хромосом, выраженной преимущественно на первых стадиях профазы мейоза, является их хромомерное строение (рис. 12). Из данных по цитологии мейотических хромосом некоторых видов растений хорошо известна индивидуальность хромомерного строения каждой хромосомы («Цитология и генетика мейоза» В. В. Хвостовой и Ю. В. Богданова, 1975). К сожалению, индивидуальные биваленты в хромосомном наборе человека, как мужском, так и женском, можно выделить лишь в поздней пахитене, когда они значительно сокращены и хромомерность их строения существенно утрачена. Тем не менее в результате нескольких попыток пахитенного анализа хромосом получены первые сведения о морфологии бивалентов акроцентрических и некоторых других хромосом (под ред. А. А. Прокофьевой-Бельговской, 1969; Hungeriord, 1973).
В идентификации пахитенных бивалентов с определенным успехом применены С- и Q-методы дифференциальной окраски (Goetz, 1975). Обнаружено полное совпадение между рисунками G-окрашивания и хромомерным строением пахитенных хромосом, а также между рисунками окрашенных по G-методу мейотических и митотических хромосом (Luciani e. a., 1975).
Хромосомная конъюгация и образование хиазм. Исследование диакинеза — метафазы I мейоза в клетках мужчин показало, что гомологичная конъюгация является обязательной для всех хромосом человека, включая короткие. В том или ином биваленте имеется от 1 до 6 хиазм; по данным разных авторов, их общее число на хромосомный набор колеблется от 35 до 66 (Ford, 1973). Распределение хиазм в индивидуальных бивалентах стало возможным анализировать после того, как каждый бивалент удалось идентифицировать на основе последовательной окраски по Q- и С-технике (Hulten, 1974). По данным Hulten (1974), средняя частота хиазм в индивидуальных аутосомах пропорциональна длине хромосомы. На нее не влияют численные или структурные нарушения в других хромосомах. По-видимому, хиазмы формируются в определенных районах каждой хромосомы. Выяснение числа и локализации хиазм в каждой хромосоме имеет важное значение при их генетическом картировании.
Реферат опубликован: 15/04/2005 (39498 прочтено)