Страница: 3/7
Идентификация хромосомных аномалий. Явление конъюгации гомологичных хромосом в мейозе используется для индентификации многих хромосомных перестроек, затрагивающих линейную структуру хромосомы. Делеции, вставки, инверсии, реципрокные транслокации, дуплика-ции приводят к изменению конфигурации бивалента. Возникают униваленты, триваленты и т. д. В сочетании с анализом митотических хромосом исследование морфологии мейотических хромосом в пахитене, диакинезе и мета-фазе I неоднократно проводилось в случаях численных или структурных изменений аутосом, половых хромосом у мужчин с бесплодием (А. А. Прокофьева-Бельговская и В. К. Борджадзе, 1971; Kjessler, 1966; Hulten, 1974, и др.). Субмикроскопическая или надмолекулярная организация хромосомного аппарата изучена совершенно недостаточно. Если о строении хромосомы на уровне световой микроскопии и о молекулярном строении наследственного материала в настоящее время накоплена обширная информация, то промежуточные ступени ультраструктурной организации хромосомы остаются в основном неизвестными. Нет пока никаких фактических предпосылок ставить вопрос о возможной специфике ультраструктурной организации генетического аппарата человека.
Наиболее ценную информацию о тонкой структуре функционирующих хромосом принесло исследование политенных хромосом, которые являются специфической, но естественной моделью хромосом интерфазного ядра в клетках двукрылых, и хромосом типа «ламповых щеток», обнаруживающихся в ооцитах амфибий в мейотической профазе I. Большие размеры этих хромосом позволили провести тщательное их изучение под световым микроскопом. В результате этих исследований сформулированы положения, которые рассматриваются как принципиальные для организации хромосом эукариотов в целом (И. И. Кикнадзе, 1972).
В интерфазном ядре хромосомные районы, соответствующие эухроматину, имеют хромомерное строение. Каждая хромомера является структурной и функциональной единицей хромосомы как продольно дифференцированной органеллы. Дифференциальная транскрипция этих единиц структурно обеспечивается деконденсацией упакованного в ней дезоксирибонуклеопротеида, что выражается в форме пуфов в политенных хромосомах, или петель в хромосомах типа «ламповых щеток».
Методом исследования тонкой структуры интерфазных ядер, не обладающих политенными хромосомами, а также метафазных хромосом является электронная микроскопия (Ю. С. Ченцов, В. Ю. Поляков, 1974). К сожалению, на основании результатов, полученных этим методом, пока не удалось составить цельного представления об ультраструктуре интерфазного ядра. На электронограммах ультратонких срезов основная обнаруживаемая морфологическая единица — это нить в разных сечениях диаметром 10 нм и меньше. На препаратах хроматина, распластываемого на поверхности водного мениска, обнаруживаются протяженные нити около 23—25 нм в диаметре.
Несмотря на многочисленные исследования митотических или мейотических хромосом, данные по их ультраструктуре, которые позволили бы создать непротиворечивую модель упаковки элементарной хромосомной нити во время клеточного деления, остаются скудными. Наибольшая информация получена по ультраструктуре специализированных районов хромосом: центромерного района, ядрышка, синаптонемального комплекса в мейотическпх хромосомах. Данные электронной микроскопии целых изолированных хромосом использованы для их идентификации, при этом специальное внимание уделено метафазным хромосомам человека (Bahr, Larsen, 1974). Этот метод позволил обнаружить неравномерную плотность упаковки элементарных хромосомных нитей по длине хромосом, и рисунок этой неравномерности оказался совпадающим с линейной дифференцированностыо структуры хромосомы, выявляемой под световым микроскопом. Элементарные фибриллы на электронограммах целых распластанных хромосом имеют размер порядка 25—30 нм. Биохимическое исследование таких фибрилл и соответствующие расчеты дают основание заключить, что молекулы нуклеопротеидов находятся в них в сверхскрученном состоянии и что, кроме гистонов, фибриллы содержат другие белки.
Достаточно полное освещение вопросов молекулярной генетики и хромосомной организации в многочисленных специальных монографиях и руководствах (С. Е. Бреслер, 1973; И. П. Ашмарин, 1974; Г. Стент, 1974, и др.) исключают необходимость подробного рассмотрения этих вопросов в данной книге. Сравнительно новый молекулярный аспект хромосомной организации возник в связи с разработкой методов фракционирования тотальной ДНК генома по повторяемости сходных нуклеотидных последовательностей и методов гибридизации нуклеиновых кислот на хромосомных препаратах. Эти методы открыли возможность выяснения локализации разных фракций ДНК в хромосомном наборе. Важными находками, полученными в этой новой области, пограничной между молекулярной и цитологической генетикой, были: а) обнаружение в геноме эукариотов, помимо ДНК с уникальными последовательностями, большой доли ДНК с одинаковыми или близкими последовательностями нуклеотидов, повторяющимися многие сотни и тысячи раз (Г. П. Георгиев, 1973; С. А. Лимборская, 1975); б) обнаружение неравномерной локализации ДНК с разными характеристиками в хромосомном наборе: ДНК с наибольшим числом повторяющихся последовательностей локализуется в гетерохроматиновых районах хромосом.
К настоящему времени фракционирование ДНК и определение хромосомной локализации фракций проведено на многих видах организмов. Каждый вид характеризуется своей специфической структурой генома в отношении состава ДНК и спецификой их распределения по хромосомам набора. Многие работы этого направления выполнены на клетках человека. Полученные в них результаты подытожены А. Ф. Захаровым (1977) и Jones (1973).
ДНК генома человека может быть фракционирована на ДНК с уникальными копиями (около 64%) и ДНК с повторяющимися последовательностями. По скорости ренатурации, которая отражает повторяемость нуклеотидных последовательностей, последняя фракция может быть подразделена на ДНК с малой (13,4%), промежуточной (12,3%) и высокой (10,3%) скоростью ренатурации молекул ДНК. Таким образом, в геноме человека около 10% всей ДНК имеет высокую многократность повторения одинаковых последовательностей.
Методом градиентного ультрацентрифугирования в группе ДНК с высокой повторяемостью последовательностей выделены по крайней мере четыре типа так называемых сателлитных ДНК. Помимо этих видов ДНК, в экспериментах с гибридизацией ДНК — РНК исследована хромосомная локализация ДНК, кодирующая синтез 5S, 18S и 28S рибосомных РНК. В настоящее время распределение разных типов ДНК в хромосомах человека вырисовывается следующим образом.
ДНК с низкой и промежуточной повторяемостью нуклеотидных копий обнаруживается во всех хромосомах, причем она локализуется по всей длине их плеч.
ДНК с высокой повторяемостью нуклеотидных копий обнаруживается преимущественно в околоцентромерных и отчасти теломерных районах. Сателлитные индивидуальные ДНК распределены в разных хромосомах неравномерно. Так, сателлитной ДНК I и IV особенно богата Y-xpoмосома, в хромосомах 1 и 16 больше всего содержится сателлитной ДНК II, а в хромосоме 9 — III. Рибосомная ДНК 18S и 28S заключена почти исключительно в коротких плечах всех 10 акроцентрических хромосом. Дистальная часть длинного плеча аутосомы 1 — преимущественное место для пистронов, кодирующих 5S РНК. Не исключена возможность, что методом гибридизации ДНК с РНК in situ удастся картировать не только полигенные ло-кусы, но также структурные гены, повторяющиеся малое число раз (Rotterdam. Conference, 1974).
Две важнейшие черты генетической организации эукариотов - дифференциальная активность структурных генов и большая доля генов, регулирующих этот процесс,— должны иметь основой соответствующую структурную организацию хромосомы. Десятилетия упорного труда цитогенетиков значительно приблизили нас сегодня к пониманию того, как в хромосоме взаимодействуют структура и функция, как хромосома осуществляет свою сложную роль интеграции системы генов.
Первая фундаментальная черта структурно-функциональной организации хромосомы состоит в существовании двух разных функциональных типов хромосомного материала — эухроматина и гетерохроматина. Их основное различие заключается в транскрипционной активности.
Отсутствие генетической активности у гетерохроматина обусловлено либо его бедностью структурными генами (структурный гетерохроматин), либо временным выключением участка хромосомы, несущего такие гены, из генетической транскрипции (факультативный гетерохроматин, гетерохроматинизация).
Второй важнейшей чертой хромосомной организации является линейная расчлененность хромосомы па участки, состоящие из хроматина разного типа. Каждая хромосома отличается своим уникальным порядком расположения гетеро- и эухроматиновых районов.
Подразделенность хроматина по генетическому значению хорошо коррелирует с различием типов хроматина и по ряду других характеристик: состоянию конденсации в интерфазном ядре и хронологии конденсации в митотическом и мейотическом цикле; времени репликации ДНК;
отношению к окраске флуорохромами или нефлуоресцирующими красителями; чувствительности к повреждающему действию химических мутагенов; химическим особенностям ДНК и, по-видимому, белков, входящих в состав хроматина; фенотипическим проявлениям хромосомных перестроек. Для гетерохроматина характерны конденсированное состояние в интерфазном ядре, опережающая конденсация в профазе митоза и мейоза, возможность отставать в конденсации спонтанно или под влиянием некоторых воздействий в метафазе митоза. По сравнению с эухроматином гетерохроматиновые районы хромосом репродуцируются в более поздние отрезки S-периода. При дифференциальной окраске по G- и С-методике гетерохроматиновые сегменты сохраняют способность к окрашиванию (G-сегменты) и даже усиленно красятся (С-сегменты). В цитогенетике хорошо известна неравномерность распределения по длине хромосомы ее структурных повреждений, индуцируемых мутагенными веществами: повышенной повреждаемостью отличаются именно гетерохроматиновые районы. ДНК с неоднократно повторяющимися нуклеотидными последовательностями характерна именно для гетерохроматина. В отличие от эухроматина, содержащего уникальные гены, дисбаланс по которым отрицательно отражается на фенотипе организма, изменения в количестве гетерохроматина не влияют или значительно меньше влияют на развитие признаков организма.
Взаимосвязанность различных структурных и функциональных характеристик хромосомы — третья фундаментальная черта хромосомной организации. Вопрос о причинно-следственных связях в отмеченном корреляционном комплексе активно исследуется. Ответ должен быть получен, в частности, на вопрос о том, сводимо ли все разнообразие свойств разных видов хроматина к различиям в химических особенностях хромосомной ДНК. Однако независимо от прогресса в понимании этих корреляций их феноменология служит главным инструментом к познанию структурно-функциональной расчлененности каждой конкретной хромосомы человека. В продольной дифференцированности индвидуальных хромосом по плотности конденсации, по окрашиваемости теми или иными красителями, по особенностям составляющей их ДНК и другим характеристикам заложены не формальные признаки идентификации хромосом или их участков, а признаки, имеющие генетический смысл. Эта новая область цитогенетики человека активно развивается, и в сочетании с успехами в картировании хромосом поднимет цитогенетику человека на еще более высокий уровень. Из уже имеющихся по этой проблеме сведений интерес для генетики представляют следующие.
Гетерохроматин, окрашивающийся по методике С-окраски, обнаруживается во всех хромосомах человека и называется структурным гетерохроматином. Во всех аутосомах и Х-хромосоме он занимает, как в большинстве хромосом других биологических видов, околоцентромерный район. В Y-хромосоме он локализуется в дистальной части длинного плеча. В разных хромосомах количество С-гетерохроматина разное. Особенно крупные его блоки, распространяющиеся преимущественно на длинные плечи, содержатся в аутосомах 1, 9 и 16; именно эти районы известны в качестве наиболее регулярных вторичных перетяжек. Особенно мелкие блоки этого хроматина наблюдаются в аутосоме 2 и в Х-хромосоме. В акроцентрических хромосомах гетерохроматин распространяется на короткие плечи.
По-видимому, в разных хромосомах околоцентромерный гетерохроматин неодинаков, что следует из ряда фактов. Эта разнородность обнаруживается уже по разному оптимуму времени и рН щелочного диапазона, применяющегося в технике С-окраски, при которых С-хроматин появляется в разных хромосомах. Неоднородность особенно демонстративна при окрашивании хромосом акрихином или акрихин-ипритом: С-гетерохроматин аутосом 1, 9 и 16 совершенно не флуоресцирует, а гетерохроматин аутосом 3, 4, акроцентрических хромосом и Y-хромосомы светится чрезвычайно ярко. Генетическое значение разнородности С-гетерохроматина человека пока не ясно. Химическая основа этой разнородности начинает проясняться. Экспериментами с гибридизацией ДНК с РНК на цитологических препаратах установлено, что различия гетерохроматина разных хромосом человека могут быть связаны с особенностями структуры ДНК. Во всех случаях это ДНК с повторяющимися нуклеотидными последовательностями, однако в разных хромосомах содержатся, по-видимому, разные классы ДНК. Так, из хорошо охарактеризованных сателлитных ДНК сателлиты I и IV в большом количестве содержатся в Y-хромосоме, сателлит II — в гетерохроматине аутосомы 1 и 16, сателлит III — в гетерохроматине аутосомы 9. Структурный гетерохроматин акроцентрических хромосом — основной носитель рибосомной ДНК.
В полном соответствии с данными общей цитогенетики о слабом отрицательном влиянии дисбаланса по гетерохроматиновому материалу на развитие организма находятся сведения о существовании в человеческой популяции значительного полиморфизма, обусловленного размерами околоцентромерного гетерохроматина. Особенно сильно варьирует содержание структурного гетерохроматина С-типа в аутосомах 1, 4, 9, 13—15, 16, 21—22 и Y-хромосоме. Отсутствие фенотипических отклонений от нормы у большинства носителей таких кариотипических вариантов позволяет рассматривать их как варианты нормы. Однако эта проблема поставлена на повестку дня совсем недавно. Она требует тщательных исследований на большом популяционном материале, прежде чем будут намечены обоснованные границы хромосомной нормы, за пределами которой для организма становится не безразличным дисбаланс и по гетерохроматину.
Есть много оснований рассматривать хромосомные районы, положительно окрашивающиеся по G-методике, как разновидность структурного гетерохроматина. В пользу этого представления, помимо отношения к красителям, свидетельствуют поздняя репликация этих районов, образование ими хромомер в профазных мейотических хромосомах, способность отставать в митотической конденсации под влиянием 5-бромдезоксиуридина или холода. Важно отметить, что дисбаланс по аутосомам, особенно богатым G-окрашивающимся хроматином, влечет за собой возникновение наименее тяжелых аномалий развития для индивида — носителя такого дисбаланса. Так, именно к этой категории хромосомных аномалий относятся трисомии 13, 18 и 21. Имеются сообщения и о том, что ДНК со средней повторяемостью одинаковых нуклеотидных последовательностей локализуется в G-окрашивающихся сегментах хромосом.
Вопросы, которые стоят перед цитогенетикой человека в отношении структуры, локализации и особенно генетического значения структурного гетерохроматина, сравнительно новые.
Прогресс в их разрешении нельзя отделить от прогресса в расшифровке природы гетерохроматина у эукариотов в целом.
Помимо структурного гетерохроматина, существует ф а-культативный гетерохроматин, появление которого в хромосоме обусловлено гетерохроматинизацией эухроматических районов при особых условиях. Имеются достоверные доказательства существования этого явления в хромосомах человека на примере генетической инактивации одной из Х-хромосом в соматических клетках женщины. У человека и других млекопитающих это частный случай явления, впервые открытого на дрозофиле Muller в 1932 г. и получившего название «компенсации дозы гена». Для млекопитающих его сущность состоит в эволюционно сформировавшемся механизме инактивации второй дозы генов, локализованных в Х-хромосоме, благодаря чему, несмотря на неодинаковое число Х-хромосом, мужской и женский организмы по количеству функционирующих генов уравнены.
Сформулированная Lyon (1961, 1974) соответствующая гипотеза, получившая ее имя, состоит из трех основных положений:
1. В соматических клетках нормального женского организма одна из двух Х-хромосом инактивирована.
2. В разных клетках организма инактивируется или материнская, или отцовская Х-хромосома.
3. Инактивация происходит в раннем эмбриональном периоде и стойко сохраняется за данной Х-хромосомой в клеточных поколениях.
Гипотеза Lyon основана на большом числе генетических и цитологических фактов, в том числе полученных на человеке, которые за годы с момента ее выдвижения непрерывно пополнялись и сведения о которых можно найти в ряде обзоров (А. Ф. Захаров, 1968; Lyon, 1972, 1974; Ghan-dra, Brown, 1975, и др.).
Генетические факты основаны на том, что у гетерозигот по сцепленным с Х-хромосомой признакам обнаруживаются две клеточные популяции. В одной из них проявляется действие гена материнской Х-хромосомы, в другой — отцовской, что связано с инактивацией отцовского или материнского аллелей соответственно. При формулировании своей гипотезы Lyon опиралась на случаи мозаичной окраски шерстного покрова мышей, что обусловливалось инактивацией в разных участках тела либо дикого гена, либо его мутантного аллеля. У человека обстоятельные доказательства существования в организме гетерозиготных женщин двух популяций клеток, в каждой из которых инактивирован один из двух аллелей гена, локализованного в Х-хромосоме, получены при изучении эффектов генов глюкозо-6-фосфатдегидрогеназы, фосфоглицераткиназы, гипоксантин-фосфорибозилтрансферазы, эритроци-тарной группы крови Xg (а), при изучении сцепленных с Х-хромосомой агаммаглобулинемии и мукополисахаридоза (синдром Хантера), гемофилии. У гетерозигот по электро-форетическим вариантам глюкозо-6-фосфатдегидрогеназы подтверждено, что у человека Х-хромосома инактивируется в раннем эмбриональном периоде (Migeon, Kennedy, 1975). Эти выводы необходимо иметь в виду при интерпретации данных по наследственным болезням, сцепленным с Х-хромосомой, особенно у монозиготных близнецов.
Цитологические доказательства в пользу гипотезы Lyon также весьма убедительны и состоят в том, что в нормальных женских соматических клетках одна из двух Х-хромосом отвечает характеристикам гетерохроматинизированной хромосомы. В интерфазном ядре она обнаруживается в виде так называемого тельца Барра (Х-хроматина) — плотно конденсированной, интенсивно окрашивающейся глыбки хроматина. В профазе эта хромосома опережает в цикле конденсации своего гомолога — вторую Х-хромосому. В условиях экспериментального воздействия холодом или 5-бромдезоксиуридином одна из Х-хромосом значительно отстает в конденсации, не отличаясь в этом отношении от структурного гетерохроматина аутосом 1, 9, 16 и Y-хромосомы. Вторая Х-хромосома является одной из наиболее запаздывающих по началу и окончанию репликации ДНК.
Исследование многочисленных случаев аномалий в системе Х-хромосом у человека показывает, что явление компенсации дозы генов распространяется также на все случаи нарушений в числе Х-хромосом, оставляя в соматической клетке лишь одну Х-хромосому в активном состоянии. Особенно демонстративны в этом отношении Х-полисомии, когда число инактивированных Х-хромосом равно числу имеющихся в клетке за вычетом одной генетически функционирующей.
Как было показано выше, сведения о кариотипе человека постоянно углубляются, и исследования все больше Проводятся на молекулярном уровне. Цитологическое изучение материальных основ наследственности человека хорошо дополняется генетическим анализом дискретных признаков.
Глава 3. Цитогенетический метод.
В генетике человека используются разнообразные методы исследования, применяемые и в других разделах биологии — генетике, физиологии, цитологии, биохимии и др. Антропогенетика располагает также собственными методами исследования: цитогенетическим, близнецовым, генеалогическим и др.[4]
Достижениями молекулярной биологии и биохимии внесен большой вклад в развитие генетики. В настоящее время биохимическим и молекулярно-генетическим методам исследования принадлежит ведущая роль в генетике человека и медицинской генетике. Однако и классические методы генетики человека, такие как цитогенетический, генеалогический и близнецовый, имеют существенное значение в настоящее время, особенно в вопросах диагностики, медико-генетического консультирования и прогнозирования потомства.
Ознакомимся с возможностями цитогенетического метода.
Суть этого метода заключается в изучении строения отдельных хромосом, а также особенностей набора хромосом клеток человека в норме и патологии. Удобным объектом для этого служат лимфоциты, клетки эпителия щеки и другие клетки, которые легко получать, культивировать и подвергать кариологическому анализу. Это важный метод определения пола и хромосомных наследственных заболеваний человека.
Основой цитогенетического метода является изучение морфологии отдельных хромосом клеток человека. Современный этап познания строения хромосом характеризуется созданием молекулярных моделей этих важнейших структур ядра, изучением роли отдельных компонентов хромосом в хранении и передаче наследственной информации.
В главе 1 мы рассмотрели такие компоненты хромосом, как белки и нуклеиновые кислоты. Здесь же кратко остановимся на строении и морфологии хромосом.
Строение хромосом.
Хромосомную теорию наследственности создал американский ученый Т. Г. Морган. Проведя большое количество исследований на плодовой мушке дрозофиле, Морган и его ученики установили, что именно в хромосомах находятся открытые Менделем факторы наследственности, которые были названы генами. Т. Морган и его ученики показали, что гены расположены линейно по длине хромосомы.
После того как было доказано, что хромосомы являются основными генофорами (носителями генов), начался период их наиболее интенсивного изучения. Успехи молекулярной биологии и генетики позволили понять некоторые закономерности строения и функционирования хромосом прокариот и эукариот, однако многое здесь остается еще неизвестным. В последние годы хромосомы эукариот, особенно человека, становятся предметом изучения различных специалистов, начиная от генетиков и кончая физиками.
В настоящее время установлено, что в основе строения хромосомы лежит хроматин — сложный комплекс ДНК, белков, РНК и других веществ, входящих в хромосому (строение хроматина мы подробно рассмотрели в главе 1). Предполагается, что в хромосому человека входит одна гигантская молекула ДНК, молекулы РНК, гистоны и кислые белки, различные ферменты, фосфолипиды, металлы Са2+, Mg2+ и некоторые другие вещества. Способ укладки и взаимного расположения молекул этих химических соединений в хромосоме пока не известен. Длинная нить ДНК не может располагаться в хромосоме беспорядочно. Существует предположение, что нить ДНК упакована закономерным образом и связана с белками.Реферат опубликован: 15/04/2005 (39389 прочтено)