Страница: 1/5
Оглавление:
Оглавление...................................................................................1
Введение........................................................................................2
Видные деятели химии о катализе.............................................5
Немного о промышленном катализе........................................7
Роль катализа в экологии..........................................................11
Энергетический барьер..............................................................12
Прохождение через энергетический барьер............................14
Гомогенный катализ..................................................................17
Гетерогенный катализ...............................................................19
Катализ в биохимии..................................................................20
Приложения(графики и схемы)..............................................22-25
Список литературы...................................................................26
Введение.
КАТАЛИЗ - процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами.
Катализаторы - вещества, изменяющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.
Каталитические реакции - реакции, протекающие в присутствии катализаторов.
Положительным называют катализ, при котором скоость реакции возрастает, отрицательным (ингибированием) - при котором она убывает. Примером положительного катализа может служить процесс окисления аммиака на платине при получении азотной кислоты. Примером отрицательного - снижение скорости коррозии при введении в жидкость, в которой эксплуатируется металл, нитрита натрия, хромата и дихромата калия.
Катализаторы, замедляющие химическую реакцию, называются ингибиторами.
В зависимости от того, находится катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе.
Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:
Н О + I = H O + IO
Н O + IO = Н O + O + I
При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.
При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела - катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель. Механизм гетерогенного катализа сложнее, чем у гомогенного.
Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.
1. Диффузия реагирующих веществ к поверхности твердого вещества.
2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их.
3. Химическая реакция между реагирующими молекулами.
4. Десорбция продуктов с поверхности катализатора.
5. Диффузия продукта с поверхности катализатора в общий поток.
Примером гетерогенного катализа является окисление SO в SO на катализаторе V O при производстве серной кислоты (контактный метод).
Промоторы (или активаторы) - вещества, повышающие активность катализатора. При этом промоторы могут сами и не обладать каталитическими свойствами.
Каталитические яды - посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы мышьяка, фосфора вызывают быструю потерю катализатором V O активности (контактный метод производства H SO ).
Многие важнейшие химические производства, такие, как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов.
Биохимические реакции в растительных и животных организмах ускоряются биохимическими катализаторами - ферментами.
Скорость процесса - чрезвычайно важный фактор, определяющий производительность оборудования химических производств. Поэтому одна из основных задач, поставленных перед химией научно-технической революцией, это поиск путей увеличения скорости реакций. Другая важ- ная задача современной химии, обусловленная резко возрастающими масштабами производства химических продуктов,- повышение избирательности химических превращений в полезные продукты, уменьшение количества выбросов и отходов. С этим связана, кроме того, и охрана окружающей среды и более рациональное использование истощающихся, к сожалению, природных ресурсов.
Для достижения всех этих целей нужны верные средства, и такими средствами служат прежде всего катализаторы. Однако изыскивать их не так просто. B процессе познания внутреннего устройства окружающих нас вещей ученые установили определенную градацию, иерархию уровней микромира. Мир, описываемый в нашей книге,- это мир молекул, взаимные превращения которых составляют предмет химии. Нас будет интересовать не вся химия, а только часть ее, посвященная изучению динамики изменения химической структуры молекул. Видимо нет надобности говорить о том, что молекулы построены из атомов, а последние- из ядра и окружающей его электронной оболочки; что свойства молекул зависят от природы составляющих их атомов и последовательности соединения их друг с другому что химические и физические свойства веществ зависят от свойств молекул и характера их взаимосвязи. Будем считать, что все это в общих чертах известно читателю, и потому главный упор сделаем на вопросах, связанных с представлением о скорости химических реакций.
Взаимные превращения молекул протекают с самой различной скоростью. Скорость можно изменять, нагревая или охлаждая смесь реагирующих молекул. При нагревании скорость реакции, как правило, возрастает, но это не единственное средство ускорения химических превращений. Существует еще один, более эффективный способ - каталитический, широко используемый в наше время в производстве самых разнообразных продуктов.
Первые научные представления о катализе возникли одновременно с развитием атомной теории строения вещества. В 1806 г., через год после того, как один из создателей современной атомистической теории Дальтон сформулировал в «Записках Манчестерского литературного и философского общества» закон кратных отношений, Клеман и Дезорм опубликовали подробные данные об ускорении процесса окисления сернистого газа в присутствии окислов азота при камерном производстве серной кислоты. Шесть лет спустя в «Технологическом журнале» Кирхгоф изложил результаты своих наблюдений об ускоряющем действии разбавленных минеральных кислот на гидролиз крахмала до глюкозы. Этими двумя наблюдениями была открыта эпоха экспериментального изуче- ния необычных для того времени химических явлений, которым шведский химик Берцелиус дал в 1835 г. общее название «катализ» от греческого слова «каталоо» - разрушать. Такова, в двух словах, история открытия ка- тализа, который с полным основанием следует отнести к одному из фундаментальных явлений природы.
Теперь нам следует дать современное и наиболее общепринятое определение катализа, а затем и некоторую общую классификацию каталитических процессов, так как именно с этого начинается любая точная наука. Как известно, «физика - это то, чем занимаются физики (то же самое можно сказать и о химии)». Следуя этому наставлению Бергмана, можно было бы ограничиться утверждением, что «катализ - это то, чем занимаются и химики и физики». Но, естественно, такого шутливого объяснения недостаточно, и со времен Берцелиуса давалось множество научных определений понятию «катализ». На наш взгляд наилучшее определение сформулировано Г. К. Вересковым: «Феноменологически катализ можно определить как возбуждение химических реакций или изменение их скорости под действием веществ - катализаторов, многократно вступающих в промежуточные химические взаимодействия с участниками реакции и восстанавливающих после каждого цикла промежуточных взаимодействий свой химический состав».
Самое странное в этом определении его заключительная часть - вещество, ускоряющее химический процесс, не расходуется. Если нужно ускорить движение тяжелого тела, его подталкивают и, следовательно, затрачивают на это энергию. Чем больше потрачено энергии, тем большую скорость приобретает тело. В идеальном случае количество затраченной энергии будет точно равно приобретенной телом кинетической энергии. В этом проявляется фундаментальный закон природы - сохранение энергии.
Видные деятели химии о катализе
И. Берцелиус (1837):
«Известные вещества оказывают при соприкосновении с другими веществами такое влияние на последние, что возникает химическое действие,- одни вещества разрушаются, другие образуются вновь без того, чтобы тело, присутствие которого вызывает эти превращения, принимало в них какое-либо участие. Мы называем причину, вызывающую эти явления, каталитической силой».
М. Фарадей (1840).
«Каталитические явления можно объяснить известными свойствами материи, не снабжая ее при этом никакой новой силой».
П. Рашиг (1906):
«Катализ представляет вызываемое внешними причинами изменение строения молекулы, имеющее следствием изменение химических свойств».
Реферат опубликован: 15/04/2005 (9649 прочтено)