Культивирование вирусов

Страница: 4/6

Метилцеллюлоза в концентрации 0,1-0,2% обладает максимальным за­щитным действием на взвешенные в среде клетки. Протективное действие метилцеллюлозы заключается в том, что молекулы образуют защитный слой вокруг клетки, предотвращающий повреждение клеток при перемешивании среды. Весьма важным показателем состояния суспензионной культуры является парци­альное давление кислорода в жидкой фазе. Концентрация кислорода в газовой фазе зависит от плотности клеточной популяции и нередко бывает ниже атмо­сферной. Недостаток кислорода ведет к появлению грануляции цитоплазмы, клетки теряют правильную округлую форму. При небольшом избытке кислорода клетки имеют хорошо очерченную, правильную, округлую форму, и становятся очень крупными при повреждающем действии избытка кислорода. Оптимальная концентрация кислорода для различных клеточных культур находится в пределах от 9 до 17% или 293 мм рт. столба. При концентрации кислорода выше 20% про­исходит ингибиция клеточного роста. Так, при концентрации кислорода 24% раз­множение клеток почек эмбриона кролика (линия ERK) снижалось наполовину, а при 30% сводилось к нулю. Повышение концентрации кислорода токсически воздействует на клеточный метаболизм.

Таким образом, размножение клеток в суспензии зависит от концен­трации клеток в исходной суспензии, аэрации и рН среды, состава питатель­ной среды, способа перемешивания, объема суспензии и других факторов.

Однородность суспензии, возможность длительного поддержания клеток в логарифмической фазе роста, перспективы математического моде­лирования процессов клеточного роста в зависимости от влияния факторов внешней среды, удобство многократного исследования физиологического состояния культуры клеток в суспензии, высокая экономичность метода -вот далеко не полный перечень преимуществ суспензионных культур.

Суспензионные культуры широко используется в вирусологических исследованиях и для накопления больших количеств вируссодержащего ма­териала, при изготовлении вакцин и диагностических препаратов.

3.5. КУЛЬТИВИРОВАНИЕ КЛЕТОК НА МИКРОНОСИТЕЛЯХ.

В 1967 г. Van Werel предложил метод культивирования, сочетающий эле­менты монослойного и суспензионного выращивания клеток, который он назвал методом «микроносителей». Суть его заключается в том, что клетки прикрепля­ются и размножаются на поверхности полимерных шариков-частиц «микроноси­телей» (МН), которые содержатся в суспензии с помощью перемешивающего устройства, например мешалки. На одной частице МН диаметром 160—230 мм может поместиться 350-630 (или в среднем 460) клеток. В одном мл среды можно суспензировать несколько тысяч частиц микроносителя, при этом общая площадь их составит от нескольких до 50 см2/мл.

Инокулированные в культиватор клетки прикрепляются к по­верхности частиц МН и размножаясь, образуют сплошной монослой на каж­дой отдельной частице.

Основными преимуществами этого метода являются:

1) создание равномерных условий по всему объему сосуда, что делает воз­можным эффективно контролировать необходимые параметры (рН, р02 и др.); 2) получение высокой плотности клеточной популяции до 5-6 млн. клеток в 1 мл; 3) культивирование одновременно несколько сот миллиардов клеток; 4) введение постоянного контроля за динамикой роста клеток; 5) снижение роста контамина­ции в связи с сокращением операций, связанных с разгерметизацией культураль-ного сосуда; 6) значительная экономии питательных сред; 7) возможность сохра­нять выросшие клетки непосредственно на частицах при низких температурах; 8) возможность искусственно создавать различные концентрации МН с выросшими на них клетками; 9) возможность пассирования культуры без применения трип­сина путем добавления свежих порций микроносителя.

Микроносители должны иметь:

- небольшой положительный заряд в пределах 1,5-1,8 МЭКВ/г. В связи с тем, что большинство клеток животных имеют слабо отри­цательный заряд, они легче будут прикрепляться к такому МН:

- плотность 1,05—1,15 г/см; указанная плотность является оптималь­ной для поддержания МН во взвешенном состоянии;

- диаметр частиц от 100 до 250 мкм, что обеспечивает площади для роста нескольких сотен клеток;

- гладкую поверхность;

- прозрачность;

- отсутствие токсичности компонентов для клеток;

- незначительное впитывание компонентов среды;

- универсальность, обеспечивающую возможность использования их для первичных, диплоидных и гетероплоидных клеток. Немаловажное значение имеют свойства МН, которые позволяют использовать их многократно.

Проведено исследование многих гранулированных препаратов раз­личной химической природы, в том числе из поперечно-сшитого (ПС) декстрана, ПС-агарозы, ПС-поливинилпиролидона, полиакрилнитрита, порис­того селикагеля, полистирола, капрона, нейлона, алюмосиликата с целью использования их как микроносителей.

Пригодными являются только некоторые из них, главным образом имеющие в своей основе ПС-декстран.

Несколько зарубежных фирм разработали коммерческие препараты микроносителей, готовые к употреблению: Цитодекс-1, 2, 3 (Франция, Шве­ция), Супербит (США, Англия), Биосилон (Дания). Стоимость перечисленных препаратов довольно высока, поэтому необходимо проводить исследо­вания по разработке и производству отечественных МН.

Культивирование клеток на микроносителях проводят в обычных ферментерах для суспензионного культивирования. В ферментере не долж­но быть каких-либо выступов, карманов, чтобы предотвратить накопление микроносителей в застойных зонах. Поэтому разумно использовать ферментеры с круглым дном и гладкими стенками. Внутренняя поверхность ферментера должна быть силиконизирована для предотвращения прилипания микроносителей к стеклу или нержавеющей стали ферментера.

Для контроля за окружающими культуру условиями такими, как рН и О2, может быть использовано стандартное оборудование. Скорость переме­шивания суспензии с носителем должна быть 40-60 об/мин. Для выращива­ния на МН применяются различные типы клеток.

Концентрация цитодекса может варьировать от 0,5 до 5 мг/мл. Одна­ко, при производстве профилактических вакцин, применяют обычно конеч­ную концентрацию цитодекса, не превышающую 1 мг/мл. Повышение кон­центрации до 3 мг/мл и выше создает дополнительные трудности, связанные с необходимостью перфузии питательной среды и частичной ее замены, что осложняет технологический процесс.

Посевная концентрация клеток, а также условия культивирования на МН в первые часы в значительной степени определяют оптимальные пара­метры для пролиферации и максимального накопления клеток. Показано, что посев 10 клеток/мл перевиваемой линии почек обезьян (Vero) и диплоидных клеток фибробластов эмбриона человека (MRC-5) в уменьшенном до 1/3 объема питательной среды и при периодическом включении мешалки (30 об/мин) на одну минуту через каждый час в течение 4 часов, с после­дующим добавлением питательной среды до конечного объема, ведет к уве­личению пролиферации клеток и их количества по сравнению с контролем (полный объем питательной среды в момент посадки клеток и непрерывная работа мешалки с начала культивирования).

Важное значение для культивирования клеток на МН имеет питательная среда. Правильный подбор питательной среды также будет способствовать опти­мизации процесса пролиферации клеток и их качество. Необходимо проводить подбор питательных сред для культивирования клеток на различных типах МН. Показано, что перевиваемая линия клеток почек обезьян (Vero) на цитодексе дает наибольший выход при использовании среды Игла ДМЕ (посадочная концентра­ция клеток 105 мл) но сравнению со средой ВМЕ и 199. Если же количество кле­ток при посадке снизить до 104, то лучшие результаты дает среда 199. Все испы­туемые среды содержали 10% фетальной сыворотки.

ВЫРАЩИВАНИЕ ВИРУСОВ В КУЛЬТУРАХ КЛЕТОК.

В настоящее время для выделения и размножения вирусов животных используются первичные культуры, штаммы клеток и установившиеся клеточные линии. В общих чертах процедура оказывается одинаковой для всех вирусов.

Среду удаляют с клеточного монослоя и монослой промы­вают сбалансированными буферными солевыми растворами (СБСР) или фосфатно-солевым буфером (ФСБ) для удаления ингибиторов (антител), которые могут присутствовать в среде. Вирусные частицы суспендируются в небольшом количестве СБСР или ФСБ и адсорбируются клетками в течение 30 - 60 мин. После этого солевые растворы заменяются свежей средой.

Заражение вирусами культивируемых клеток вызывает ха­рактерные морфологические изменения клеток. Конечные деге­неративные клеточные процессы (цитопатогенный эффект, ЦПЭ) обнаруживаются только через несколько недель роста в присутствии вирусов, но в ряде случаев ЦПЭ обнаруживаются уже через 12 ч. Детали морфологических изменений оказыва­ются различными в случае разных вирусов.

Если вместо продуктивной инфекции вирус вызывает кле­точную трансформацию, то это также сопровождается харак­терными изменениями морфологии и особенностей роста кле­ток.

ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ЗАРАЖЕННЫМИ ВИРУСАМИ КЛЕТКАМИ.

Вирусы оказывают цитопатогенное действие и служат этиоло­гическими агентами при многих заболеваниях человека и жи­вотных. Кроме того, многие вирусы (например, онкорнавирусы, вирус герпеса тип II, аденовирусы, вирус полиомы и SV40) яв­ляются, по-видимому, агентами, вызывающими развитие опу­холей у животных. Из-за способности вирусов проходить через бактериальные фильтры бывает трудно исключить вирусы из культур незараженных клеток при наличии вирусных суспен­зий, когда возможна передача вируса через воздух культуральной комнаты.

Реферат опубликован: 18/04/2005 (15198 прочтено)