Макрофаги перитонеального экссудата как модель фагоцитоза

Страница: 6/9

В случае, ежели необходимы активированные МФ, то их активацию проводят путем

Иммунизации животного введением различных сывороток или мощных антигенов,

Индуцированием очага септического воспаления брюшины (введение токсина в р-ре пептона, введение взвеси убитых или живых микроорганизмов).

Дальнейшие действия совпадают с уже названными.

Представляет интерес также выделение человеческих МФ. Обычно, их получают из асцитической жидкости больных с недостаточностью кровообращения III степени. Затем их осаждают центрифугированием (400g, 10 мин), замораживают при температуре жидкого азота. После размораживания их помещают в специальные чашки со средой и культивируют.

Подчас непосредственно МФ полученные из перитонеального экссудата служат лишь для регистрации опыта поставленного над животным in vivo и их культивирование носит только диагностических характер.

II.Регистрация результатов

После постановки опытов возникает резонный вопрос, а как обнаружить изменение активности МФ, как определить те изменения, повлиявшие на работу фагоцитирующих клеток. В нашей стране наиболее широко используется несколько методов.

Для исследования поглотительной фазы фагоцитоза используют различные тест-объекты. Ими могут служить кроме микробов эритроциты и различные индиф­ферентные частицы: латекса, туши, кармина, коллоидного угля, кадмия. Поглотительную активность фаго­цитов оценивают прямым визуальным подсчетом поглощенных микробов или других частиц внутри МФ, а так­же по числу частиц, оставшихся непо­глощенными, например частиц латекса, с помощью электронного счетчика ча­стиц, эритроцитов по концентрации гемоглобина спектрофотометрически, эмульгированных частиц масляного красного со спектрометрической регистрацией или меченных флюоресцеинизотиоцианатом микрококков с по­мощью флюориметра. Высокая точ­ность и производительность характери­зуют метод изучения фагоцитоза флюо­ресцирующих частиц латекса с помощью автоматического проточного цитофлюо-риметра. При использовании прямого визуального метода рассчитывают фагоцитарный ин­декс (ФИ) — процент фагоцитирую­щих клеток от общего числа, фагоци­тарное число (ФЧ) — среднее ко­личество частиц, захваченных одной клеткой. Отдельно учитывают резуль­таты через 1 и 3 ч: соответственно ФИ1, ФИ3, ФЧ1 и ФЧ3 , а также коэф­фициент фагоцитарного числа (КФЧ): отношение ФЧ1 к ФЧ3 — показатель, характеризующий скорость фагоцитоза.

Необходимо помнить, что эффективность всех этих показателей зависит от ряда условий, таких как длительность инкубации, формы дна сосуда — круглой и ко­нической (в конических пробирках наблюдались более высокие показатели фагоцитоза, что, видимо, обусловлено стимулирующим влиянием короткодистанционного взаимодействия), pH среды, содержания кислорода и углекислоты.

Оценка хемотаксиса лейко­цитов осуществляется двумя распро­страненными методами. Метод Бойдена основан на принципе прохождения лей­коцитов из одной половины камеры со взвесью клеток в другую половину с хемоатрактантом, разделенных между собой мембранным фильтром. Для изучения хемотаксиса макрофагов применяют фильтры с раз­мером пор соответственно 5— 8 мкм. Имеющиеся разновидности мето­да Бойдена включают двухфильтровый и радиоизотопный варианты. Другой метод основан на хемотаксисе под слоем агарозы. В качестве хемоатрактанта чаще используют обра­ботанную зимозаном или липополисахаридом сыворотку, казеин, фильтрат культуры Е. coli или других микроорга­низмов, синтетические формилпептиды.

Движение клеток при отсутствии хемотаксического стимула дает характери­стику

случайной двигательной активности (спонтанная миграция) фагоцитов.

Измерение эластичности клеток также можно осуществить в камерах Бойдена.

Адгезивные свойства фагоцитов оценивают по прилипаемости на поверхности стекла

или в колон­ках с бусами. Между способностью к распластыванию макрофагов, оп­-

ределяемой под фазово-контрастным микроскопом, и фагоцитозом имеется

определенная корреляция

Для оценки уровня активности МФ используется полярографический метод (потребление кислорода), НСТ-тест (восстановление нитросинего тетразолия), йодирование (пере­ход радиоактивного меченого йода в кислотонерастворимый осадок), окис­ление глюкозы (образование молекул 14СО2 при окислении глюкозы-1-14С). Данные тесты основаны на том, что активация МФ сопровождается кислородзависимым метаболическим «взрывом». Классическим из данных методов стал НТС-тест. Дело в том, что активированные фагоциты способны поглощать нитросиний тетразолий (НСТ) и восста­навливать его в формазан. НСТ-тест позволяет дифференцировать активированные и интактные фагоциты, но его нельзя считать количественным, так как визуальная оценка результатов субъективна

Также для определения бактерицидной способности МФ используется хемолюминесцентный метод, предложенный сравнительно недавно. Как известно, фагоцитоз нейтрофилами и мак­рофагами сопровождается генерацией активных форм кислорода (О2-, Н2О2, ОН-), индуци­рующих явление хемилюминесценции. По­следняя пропорциональна интенсивности генера­ции фагоцитами активных форм кислорода и может служить косвенным критерием их фагоци­тарной способности, тем более что образуемые продукты обладают выраженными бактерицидны­ми свойствами. Метод анализа хемилюмине­сценции используется в клинике и эксперименте.

Среди методов регистрация хемилюминесценции (ХЛ) является наиболее чувствительным и информа­тивным методом функциональной оценки фагоцитирующих клеток, но вместе с тем и одним из наиболее сложных, не столько в методическом плане, сколько в понимании природы биохимических и физических процес­сов, которые приводят к излучению света. Механизмы, лежащие в основе ХЛ фагоцитов, сложны и недостаточно изучены. Свечение может возникать в реакции O2+O1=2O2+hV, важ­ную роль могут играть радикалы ОН-. Анализ различных ингибиторов свечения приводит к мысли, что синглетный кислород, гидроксильный ра­дикал и перекись водорода вовлечены в процесс ХЛ.

ХЛ фагоцитирующих клеток значи­тельно усиливается в присутствии лю­минола или

люцигенина.

Предложено много методов регист­рации ХЛ фагоцитарных клеток, эти методы можно разделить на 2 основных класса.

/. Регистрация собственной ХЛ. Усиление собственной ХЛ фагоцити­рующих клеток наблюдается при сти­муляции опсонизированным зимоза­ном, бактериями, частицами латекса. Собственная ХЛ клеток имеет низкую интенсивность и лежит в ши­роком спектральном диапазоне с мак­симумом в области 400—500 нм. Регистрация ХЛ требует высокий чув­ствительности прибора и достаточного количества выделения клеток (обыч­но не менее 106 клеток). Эритроциты, гемоглобин, сыворотка крови ингибируют ХЛ.

2. ХЛ в присутствии люминола. Свечение имеет на 2— 3 порядка большую интенсивность, чем собственная ХЛ. Усиление ХЛ на­блюдается при действии зимозана, бактерий, частиц латекса, комплексов антиген — антитело, ионофора каль­ция, хемотаксических пептидов. ХЛ может наблюдаться в суспензии как выделенных, клеток, так и клеток в сыворотке крови.

Таким образом, хемилюминесцентный метод позволяет проводить быст­рую количественную оценку фагоци­тарной и бактерицидной активности клеток. Он может использоваться при исследовании малых количеств биоло­гического материала крови, или может служить как для оценки состояния клеток, так и для оценки опсонической активности сыворотки и влияния лекарственных препаратов.

Наиболее точными и быстрыми мето­дами определения фагоцитарной актив­ности лейкоцитов являются радиометри­ческие. Так, поглотительную способ­ность оценивают по уровню включения изотопа в фагоцитирующие клетки. Для этого используют меченные Сr эритро­циты, радиоактивную масляную эмульсию или микробы, меченные 14С-глицином, 3Н-лейцином, 3Н-уридином, или частицы 192Ir. Иногда фагоцитоз оценивают по умень­шению метки (32Р) во внеклеточной сре­де.

Радиометрические методы отличаются быстротой постановки и объективностью оценки результатов. Как правило, в конце инкубации микробов с фагоцита­ми последние разрушают осмотическим лизисом, замораживанием — оттаива­нием или дезоксихолатом натрия, затем добавляют на 30 мин при 37°С 3Н-тимидин и подсчитывают радиоактивность осажденных на фильтре бактерий. С помощью двойной метки определяют одновременно поглотительную и бакте­рицидную функцию лейкоцитов. Для этого предварительно метят микро­бы одним из изотопов (14С-фенилаланин, 14С-ацетат натрия), а затем в конце ин­кубации разрушают фагоциты и вносят 3Н-тимидин. Радиоактивность первона­чально меченых микробов, включенных в фагоциты, будет отражать их погло­тительную функцию, а радиоактивность, включенная в микробы, после разруше­ния фагоцитов будет характеризовать их бактерицидность. Существуют авто­радиографические методы оценки завер­шенности фагоцитоза по включению изотопа в процессе инкубации на стек­лах монослоя фагоцитов с микробами.

Одним из по­казателей функциональной активности макрофагов является уровень актив­ности 5’-нуклеотидазы. Активность данного фермента определяют в суспензии не разрушенных МФ по методу Туманян и Кириличевой. Метод отличается простотой и точностью, достоверностью, достаточно часто используется.

III.Некоторые моделируемые процессы.

СНИЖЕНИЕ БАКТЕРИАЛЬНОЙ АКТИВНОСТИ ПЕРИТОНЕАЛЬНЫХ МАКРОФАГОВ МЫШЕИ В УСЛОВИЯХ СОЧЕТАННОГО ПРИ­МЕНЕНИЯ СТАФИЛОКОККОВОГО

ЭНТЕРОТОКСИНА ТИПА А И ЭНДОТОКСИНА

Механизмы патогенного действия стафилококко­вых энтеротоксинов (СЭ) изучены недостаточно. Известно, что блокада ретикулоэндотелиальной системы (РЭС) торотрастом повышает чувстви­тельность животных к рвоте, индуцированной СЭ. Это предполагает, что функциональный статус РЭС играет важную роль в ответе орга­низма на энтеротоксин. Данные литературы сви­детельствуют и о возможности влияния СЭ на функционирование фагоцитирующих клеток. Во-первых, введение СЭ обезьянам через желудоч­ный зонд приводит к развитию острого гастро­энтерита с экссудацией нейтрофилов, макрофа­гов и другими признаками воспаления. Во-вторых, важнейшим свойством СЭ является спо­собность сенсибилизировать животных к ле­тальному действию эндотоксинов грамотрицательных бактерий (липополисахарид — ЛПС), что ставит их в один ряд с веществами, вызыва­ющими гиперактивацию РЭС, и также оказыва­ющими сенсибилизирующее действие. При­нимая во внимание постоянный контакт орга­низма с условно-патогенными бактериями, а со­ответственно и с эндотоксинами кишечной мик­рофлоры, исследование макрофагальных функ­ций, ответственных за элиминацию микроорга­низмов в условиях воздействия СЭ и при соче­танием применении их с ЛПС, приобретает осо­бую актуальность. В связи с этим, задачей опыта явилось изучение основных за­кономерностей изменения фагоцитарной и бакте­рицидной функций макрофагов под действием СЭ типа А (СЭА) и ЛПС.

I серию опытов по изучению фагоцитарной и бактери­цидной активности проводили с макрофагами, полученными от мышей следующих групп: 1-я — через 2 ч после инъекции энтеротоксина, 2-я и 3-я — через 24 ч после введения СЭА и ЛПС в отдельности, 4-я — через 24 ч после введения эндотоксина на фоне СЭА. СЭА вызывал двукратное снижение общего числа клеток уже через 2 ч после инъекции; через 24 ч общее количество клеток по-прежне­му оставалось пониженным. Если ЛПС у интактных мышей способствовал увеличению выхода клеток в брюшную полость, то на фоне СЭА их количество не только не возрастало под действием ЛПС, а даже достоверно уменьша­лось по сравнению с контролем.

Изучение фагоцитарной и бактерицидной ак­тивности макрофагов через 2 ч после введения мышам СЭА выявило их заметное снижение по сравнению с показателями для контрольных жи­вотных. Через 24 ч после инъекции СЭА и ЛПС в отдельности наблюдалось усиле­ние фагоцитоза. Выявленные закономер­ности изменения фагоцитарной функции макро­фагов вполне согласуются с данными литерату­ры, посвященными изучению клиренса угля у кроликов после введения стафилококковых знтеротоксинов. Н. Sugiyama также наблюдал бифазовые изменения фагоцитарной функции РЭС; подавление степени клиренса угля через 2ч после инъекции, сменяющееся его увеличени­ем через сутки.

Бактерицидная активность макрофагов, полу­ченных через 24 ч после обработки животных отдельно СЭА и ЛПС, также возрастала. В случае же совместного введения ука­занных токсинов функция поглощения изменя­лась незначительно, зато степень завершенности фагоцитоза резко снижалась. Необходимо отме­тить, что исследование морфологического соста­ва клеток перитонеального экссудата мышей че­рез 24 ч после инъекции СЭА и ЛПС не выявило существенных различий в процентном соот­ношении макрофагов в опытных группах живот­ных. Поэтому можно утверждать, что выявлен­ные изменения фагоцитарной и бактерицидной функций обусловлены влиянием исследуемых токсинов.

Для уточнения характера влияния СЭА и ЛПС на функциональную активность макрофа­гов следующую серию опытов провели в системе in vitro. С этой целью резидентные перитоне-альные макрофаги, полученные от интактных животных, инкубировали с токсинами в течение 24 ч. В данном случае функция поглощения из­менялась в меньшей степени. Бакте­рицидная активность, также как и в опытах in vivo, повышалась под действием СЭА и ЛПС в отдельности. При одновременном добавлении токсинов к макрофагам бактерицидная функция увеличивалась, а в условиях, приближающихся к таковым in vivo, т. е. при добавлении ЛПС через 4 ч после СЭА, способность макрофагов убивать Staph. aureus также резко снижалась.

Таким образом, в условиях сочетанного при­менения СЭА и ЛПС происходит резкое сниже­ние функции завершенного фагоцитоза макрофа­гов. Тот факт, что в условиях in vitro прослежи­ваются те же закономерности, что и в системе in vivo, предполагает, что СЭ оказывает непо­средственное действие на макрофагальные функ­ции. Учитывая, что фагоцитирующие клетки представляют собой первую линию защиты от чрезвычайно распространенных условно-пато­генных микробов, снижение бактерицидных свойств в условиях синергического действия СЭ с эндотоксинами грамотрицательных бактерий в организме может привести к развитию тяже­лых септических осложнений.

ОТМЕНА УСИЛИВАЮЩЕГО ФАГОЦИТОЗ ДЕЙСТВИЯ ОПСОНИНОВ С ПОМОЩЬЮ

ФРАГМЕНТОВ АНТИТЕЛ ПРОТИВ Fc-РЕЦЕПТОРОВ МАКРОФАГОВ

Один из наиболее важных и давно установ­ленных иммунологических феноменов — усиление захвата фагоцитирующими клетками корпуску­лярных антигенов после их сенсибилизации IgG-антителами — оставался продолжительное время малоизученным. После выяснения принципов структурной организации молекулы IgG и об­наружения на поверхности фагоцитов и в том числе макрофагов рецепторов для Fc-участка IgG было постулировано, что опсонизирующие антитела обеспечивают усиление за­хвата корпускулярного антигена благодаря вза­имодействию Fc-участка молекулы антитела с Fc-рецептором (FcR) макрофага. Единст­венным экспериментальным доказательством в пользу этого был факт отсутствия у Fab-фрагментов опсонизирующих антител способно­сти усиливать захват корпускулярного антигена доказательства вовлечения FcR в процесс захва­та опсонизированного корпускулярного антигена. Подобный экспериментальный подход нель­зя рассматривать как адекватный для прямого доказательства вовлечения FcR в процесс захва­та опсонизированного корпускулярного антигена. Исходя из сказанного, было решено получить прямые доказательства роли FcR в реализации механизма усиления захвата макрофагами кор­пускулярного антигена, сенсибилизированного IgG-антителами. Это было достигнуто при оцен­ке влияния на указанный процесс Fab-фрагментов антител против FcR макрофагов, которые, как было установлено, препятствуют взаимодействию с макрофагами агрегированного IgG. Пре-инкубация перитонеальных макрофагов с Fab-фрагментами анти-FcR-антител полностью отме­няла эффект усиления захвата макрофагами оп­сонизированного антигена.

В результате опыта было установлено, что Fab-фрагмент IgG из анти-FcR-сыворотки эффективно блокирует FcR мышиных мак­рофагов, препятствуя связыванию этими клетка­ми гетерологичного агрегированного IgG. Эти данные хорошо согласуются с фактом блокиро­вания FcR перитонеальных макрофагов бивалентными FаЬ-фрагментами из антиFcR. Эти данные в сочетании с результатами контрольных экспериментов, свидетельствующи­ми об отсутствии способности блокировать FcR Fab-фрагментами IgG из антисыворотки против иммунного преципитата, указывают на возмож­ность использования моновалентных Fab-фраг-ментов aнти-FcR-aнтитeл для изучения функции FcR макрофагов в реализации действия опсонинов. Следует подчеркнуть, что использование моновалентных фрагментов анти-FcR-антител имеет принципиальное значение при изучении функциональной роли FcR, поскольку в отличие от нерасщепленных антител или бивалентных FаЬ-фрагментов моновалентные Fab-фраг­менты неспособны, связавшись с FcR, вызвать при 37 °С их латеральное перемещение по цитоплазматической мембране и последующий кэппинг.

Полученные данные свидетель­ствуют, что преинкубация макрофагов с Fab-фрагментами aнти-FcR-антител полностью отме­няет эффект усиления фагоцитоза S.typhimurium(взятую как объект проверки эффективности фагоцитоза), обусловленный IgG-антителами кролика против этого микроорганизма. Собственно Fab-фраг­менты aнти-FcR-антител не оказывают какого-либо влияния на фагоцитоз несенсибилизирован­ных антителами бактерий. Если к макрофагам предварительно добавляли Fab-фрагменты ан­тител кролика против иммунного преципитата, образованного яичным альбумином и IgG-анти­телами кролика против этого антигена, это не оказывало никакого влияния на процесс фагоци­тоза сенсибилизированных антителами бакте­риальных клеток.

Таким образом, Fab-фрагменты анти-FcR-aнтител избирательно подавляют фагоцитоз толь­ко сенсибилизированных антителами бактерий. С учетом результатов контрольных эксперимен­тов это служит несомненным доказательством в пользу того, что усиление захвата корпускуляр­ного антигена после его опсонизации IgG-анти­телами обусловленно взаимодействием Fc-уча-стка опсонизирующих антител с FcR макрофа­гов.

Обращает на себя внимание тот факт, что мак­рофаги, предварительно обработанные Fab-фрагментами aнти-FcR-антител, менее эффек­тивно поглощают сенсибилизированные антите­лами бактериальные клетки, чем несенсибилизи­рованные. Этот результат можно объяснить, исходя из представления, что после сенсибилизации бактерий у части из них проис­ходит стерическое экранирование участка кле­точной поверхности, посредством которого мик­роорганизмы прикрепляются к макрофагам. Фа­гоцитоз таких бактериальных клеток осуществ­ляется, по-видимому, после взаимодействия двух молекул антител или более через их Fс-участки с несколькими FcR на цитоплазматической мем­бране макрофага. Если указанное предположе­ние справедливо, захват этой части сенсибили­зированных бактериальных клеток будет невоз­можен после блокирования FcR с помощью Fab-фрагментов aнти-FcR-антител.

Полученные в настоящей работе данные от­крывают новые подходы для регуляции процес­са иммунного фагоцитоза, что может иметь су­щественное значение для детального анализа роли этого процесса при различных патологиче­ских состояниях.

УСИЛЕНИЕ С ПОМОЩЬЮ ХИТОЗАНА РЕАКЦИИ КОНТАКТНОГО

ВЗАИМОДЕЙСТВИЯ МАКРОФАГА С ТИМОЦИТАМИ in vitro

Старая и многогранная проблема иммуностимуляции приобрела новое выражение в связи с поиском путей к созданию искусственных вак­цин. Основные усилия в данном направлении связаны с получением конъюгатов вакцинирую­щих антигенных детерминант с природными или искусственно синтезированными полимерными носителями. Роль носителя в таком молекуляр­ном комплексе должна состоять в усилении специфического ответа на избранную антиген­ную детерминанту.

При поиске эффективного носителя, который мог бы быть использован при конъюгации с ан­тигеном, необходимо иметь сведения о его адъювантном эффекте и отсутствии побочных пато­генетических свойств. В этой связи было обращено внимание на хитозан — гомополисахарид, вы­деляемый из хитина наружного скелета беспоз­воночных. Молекулярная масса изучаемого ве­щества ~ 120000 дальтон.

Цель исследования — выяснить влияние хитозана на процесс контактного взаимодействия макрофага с тимоцитами в опытах in vitro. Об­ращение к данным клеточным типам не случай­но. Известно, что взаимодействие макрофага с тимоцитами является дополнительным фактором трансформации недифференцированных тимусзависимых клеток в зрелые Т-лимфоциты. В связи с этим интересно определить, оказывает ли какое-либо влияние избранный гомополимер на один из самых ранних этапов становления иммунной системы — формирование функцио­нально активной популяции зрелых Т-клеток.

Было проведено 3 серии опытов. В 1-й серии изучали характер взаимодействия сингенных тимоцитов с прили­пающими клетками перитонеального экссудата, которые инкубировали непосредственно перед постановкой реакции с одной из выбранных доз хитозана в течение различного времени. Уста­новлено, что наиболее эффективно реакция гроздеобразования проходит при 30-минутной инку­бации макрофагов с хитозаном. Коли­чество тимоцитов, группирующихся вокруг мак­рофага, в 2,5 раза больше по сравнению с тако­вым в контроле. В этой же серии опытов решал­ся вопрос об интенсивности взаимодействия ана­лизируемых типов клеток в зависимости от до­зы, использованного для инкубации хитозана, при оптимальном времени инкубации 30 мин. Выяснено, что наибольшее усиление реакции гроздеобразования наблюдается при добавлении в культуру 50 мкг полисахарида.

Во 2-й серии опытов анализ реакции грозде­образования проведен в условиях предваритель­ной 30- и 60-минутной инкубации тимоцитов с разными дозами хитозана. Инкубация в течение как 30, так и 60 мин приводила к усилению контактного вза­имодействия тимоцитов с макрофагами. Как и в предыдущей серии опытов, оптимальная доза, усиливавшая эффект гроздеобразования, равня­лась 50 мкг.

В заключительной 3-й серии опытов проведе­но изучение интенсивности гроздеобразования при внесении хитозана непосредственно в реаги­рующую систему макрофаг—лимфоцит. Как и в 2 предыдущих сериях опытов, констатирова­но усиление контактного взаимодействия ти­моцитов с макрофагами.

Для объяснения выявленных фактов необхо­димо иметь в виду, что хитозан является поли­катионом. В то же время интегральный заряд как тимоцитов, так и макрофагов отрицатель­ный. Возможно, эффект усиления контактного взаимодействия связан с электростатическими межклеточными притяжениями под влиянием хитозана, включающими 2 этапа: 1-й этап — ад-гезия положительно заряженного хитозана на макрофаге или тимоците, 2-й — непосредственное взаимодействие отрицательно заряженной клет­ки с клеткой-партнером, проинкубированной с поликатионом и несущей в результате этого больший положительный заряд. Подобное пред­ставление подкрепляется тем, что эффект усиле­ния реакции гроздеобразования не связан со схемой инкубации и будет одинаков независимо от того, какой тип клеток подвергался инкуба­ции с хитозаном.

Второй момент, который требует объясне­ния, — это незначительное время инкубации кле­ток с хитозаном, при котором обнаруживается эффект усиления контактного взаимодействия. Возможно, что отсутствие эффекта при более длительной инкубации связано с фагоцитозом высокомолекулярного полисахарида, вследствие чего происходит восстановление исходного заря­да взаимодействующих клеток. Однако представ­ленное объяснение должно быть подтверждено дополнительными экспериментальным факта­ми.

АКТИВАЦИЯ ФАГОЦИТАРНЫХ КЛЕТОК И КЛЕТОЧНОГО ИММУНИТЕТА

СИНТЕТИЧЕСКИМИ ПОЛИЭЛЕКТРОЛИТАМИ

Ряд перспективных неприродных полиэлектро­литов, использующихся для создания синтетиче­ских вакцин, обладает многими иммуномоделирующими потенциями: они усиливают миграцию стволовых клеток, Т- и В-лимфоцитов, являются стимуляторами Т- и В-клеток, замещают хелперную функцию Т-лимфоцитов и макрофагов. Эти свойства обеспечивают сильное стимулирующее действие на реакции гуморального и клеточного иммунитета.

Вместе с тем недостаточно ясным остается во­прос об их действии на систему фагоцитарных клеток, формирование клеточного, в частности трансплантационного, иммунитета. Целью настоя­щей работы было изучение этих вопросов.

Методика исследований была следующей: мышам гибридам(CBAXC57BL/6) внутрибрюшинно вводили различные до­зы полиэлектролитов однократно, выделяли МФ через 48 ч и анализировали их.

Введение полианиона NA-5 вызывает в макрофагах мышей активацию гликолиза. Например, в 3 экспериментах усиление гликолиза по сравне­нию с контрольными клетками было в 1,45, 2,35, 4,3 раза. Это очень сильная активация гликоли­за в клетках, свидетельствующая о переходе их на более высокий физиологический уровень ме­таболизма. Значительно возрастала в клетках и интенсивность гексозомонофосфатного шунта: в 2 из 3 опытов введение полианиона сопровож­далось появлением макрофагов со средней ак­тивностью окисления глюкозы, соответствующей 8,67+1,47 и 7,24+1,95 МФЕ на 10б клеток (в контроле 5,17+0,95 и 4,1 + 1,29 МФЕ на 106 клеток). Еще более сильной оказалась ин­тенсификация цикла мочевины, различия которо­го по сравнению с контрольными клетками были уже порядковыми. Например, в опытах 1—3 они составляли соответственно 8,43, 11,54 и 2,06 раза.

Существенное усиление гликолиза обусловли­валось также введением животным карбоцепного полиамина Н-З: в 2 из 3 опытов активация была значительной, для ЛДГ она со­ставляла в опытных макрофагах соответственно 89,27+7,41 и 39,54±4,56 МФЕ на 106 клеток, в контрольных — 26,36+8,36 и 20,59+3,86 МФЕ на 106 клеток. Столь же выраженным бы­ло усиление активности окисления глюкозы, ко­торое превышало его в опытных макрофагах в сравнении с контрольными в 3 экспериментах соответственно в 2,11, 1,28 и 1,41 раза.

Крайне значительной была интенсификация цикла мочевины, так как активация ключевого фермента АРГ возрастала в различных опытах в 3,65—54,6 раза..

В то же время активность поликатиона D11-100э была значительно менее выражена, он не влиял существенно на состояние гликолиза и гексозомонофосфатного шунта макрофагов. Однако все же активность цикла моче­вины в клетках достоверно увеличивалась, хотя и менее существенно, чем под влиянием Н-3 и NA-5.

В макрофагах мышей, стимулированных поли­анионом NA-5, почти двукратно повышалась активность лизосомальных гидролаз, составляя в опыте 27,42+4,09 нМ Р/ч на 10б клеток и в контроле 15,04+3,66 нМ P/ч на 10б клеток. Активность КФ после введения мышам Н-3 была еще большей — 35,51+4,82 нМ P/ч на 10б клеток. Подобное усиление свиде­тельствует о существенном возрастании в макро­фагах переваривающей способности.

У макрофагов мышей полианион NA-5 вызы­вал не только интенсификацию некоторых путей метаболизма, но и повышение экспрессии рецеп­торов к IgG, которое было нерезко выраженным, но статистически достоверным.

Дозозависимым оказался ответ клетки, выявляемый по генерации кислородных радикалов у мышей, которым вводили различные дозы полиамина Н-3. Так, если доза 0,5 мг/мышь подавляла хемилюминесценцию макрофагов при фагоцитозе, не изменяя ее при адгезии клеток на стекло, то дозы 1, 5 и 10 мг/мышь уже обус­ловливали существенное возрастание хемилю-минесценции при фагоцитозе частиц. При адге­зии эти дозы также оказались активирующими, за исключением дозы 5 мг/мышь. Оптимальное усиление генерации активных кислородных ради­калов вызывало введение животным 1 мг/мышь препарата Н-3 — в этом случае повышалась хемилюминесценция максимально и при фагоцито­зе, и при адгезии. Дальнейшее увеличение дозы не сопровождалось повышением действия на клетки. Подобное наблюдение полностью под­тверждается данными литературы о влиянии это­го препарата на различные иммунологические параметры.

Таким образом, синтетические полиэлектроли­ты—полианион NA-5 и карбоцепный полиамин Н-3 вызывают активацию макрофагов, усиливая гликолиз, гексозомонофосфатный шунт, цикл мо­чевины, активность лизосомальных гидролаз. Препараты повышают также экспрессию на плазматической мембране макрофагов Fcv-peцепторов. Имеются, однако, особенности, состоя­щие в том, что если Н-3 вызывает усиление генерации макрофагами активных кислородных радикалов, полианион NA-5 оказывается в этом отношении неактивным. Поликатион D11-100э оказывает менее выраженное влияние на макро­фаги, однако существенно повышает на них экс- прессию Рс7-рецепторов, интенсифицирует цикл мочевины.

Формирование трансплантационного иммуни­тета изучали у животных, которые получали однократно внутрибрюшинно по 1 мг/мышь пре­паратов в день трансплантации кожи.

Результаты свидетельствовали, что все 3 пре­парата вызывали усиление трансплантационного иммунитета, выражающееся в достоверном уско­рении отторжения трансплантата у мышей, кото­рым их вводили. Причем, как и на других моде­лях, в частности при анализе состояния макро­фагов в условиях воздействия препаратов, ак­тивность полииона D11-100э уступала активности NA-5 и Н-3. Можно сделать вывод, что полиион NA-5 и карбоцепный полиамин Н3 обладают способностью усиливать клеточный Т-опосредованный иммунитет, менее активным был D11-100э.

АКТИВАЦИЯ МАКРОФАГОВ ПОД ВЛИЯНИ­ЕМ СИНТЕТИЧЕСКОГО АНТИОКСИДАНТА

Сейчас общепринятой считается закономерность: актива­ция макрофагов (МФ) сопряжена с метаболи­ческим (окислительным) взрывом, с активацией глюкозомонофосфатного шунта (ГМФШ), с про­дукцией и секрецией высокоактивных нестабиль­ных продуктов восстановления кислорода — супероксиданионов О2~, перекиси водорода (Н2О2), радикалов ОН~ и синглетного кислорода (О2) .

Образующийся при этом избыток токсичных супероксидных радикалов, а также липопереки-си, накапливающиеся в фагосомах МФ в процес­се фагоцитоза, могут обусловливать окислитель­ное повреждение клеточных мембран и связанное с этим подавление функций МФ. У МФ описана собственная система антиоксидантной защиты, включающая супероксиддисмутазу, удаляющую избыток супероксидных радикалов, а также глу-татионпероксидазу и НАДФ-зависимую глутатионредуктазу, нейтрализующие липоперекиси.

Однако при недостаточности эндогенных антиоксидантов могут возникать различные наруше­ния функций МФ. Было показано, что алкилзамещенные производные 3-оксипиридина (8 ОП), оказывающие умеренное антиокисли­тельное действие, являются эффективными инги­биторами свободнорадикальных реакций и могут быть использованы для защиты от деструктив­ного влияния свободных радикалов.

Целью работы было изучение влия­ния синтетических антиоксидантов на функции МФ. Из ряда синтетических производных ОП были выбраны 2-третбутил-З-оксипиридин (ТБОП), у которого была описана способность стаби­лизировать мембраны эритроцитов. Исследование проводились в сравнении со стандартным активатором МФ — бактериальным липополисахарида (ЛПС из Е. coli О55).

Данные, полученные при изучении непосредственного вли­яния ТБОП в сопоставлении с ЛПС на перитонеальные МФ таковы: для ак­тивации ГФДГ достаточно получасовой инкуба­ции клеток с ТБОП. Судя по показа­телям прироста активности фермента, эффект ТБОП аналогичен действию стандартного акти­ватора — бактериального ЛПС. Доля распла­станных МФ возрастает по сравнению с контро­лем уже через 2 ч инкубации с испытуемыми пре­паратами. На ранних сроках (2 ч) эффект ТБОП более выражен по сравнению с эффектом стан­дартного активатора — ЛПС. На бо­лее поздних сроках культивирования (24 ч), ак­тивирующий эффект ЛПС продолжает нарастать, в то же время доля распластанных МФ под вли­янием ТБОП имеет тенденцию к понижению по сравнению с ранними сроками, но остается до­стоверно повышенной в сопоставлении с посте­пенно возрастающим контрольным уровнем.

После внутрибрюшинного введения ТБОП уже через 1 ч он вызывает отчетливое повышение ко­личества клеток в брюшной полости за счет МФ с преимущественным накоплением крупных МФ, причем и этот эффект аналогичен действию ЛПС.

МФ, извлеченные из брюшной полости мышей через 1 ч после внутрибрюшинного введения ТБОП, отличались усилен­ным распластыванием по сравнению с МФ конт­рольных животных. Фагоцитарная активность этих же МФ была повышенной, судя по интенсивности захвата ими клеток Candida albicans. В этих условиях эксперимента ТБОП по срав­нению со стандартным активатором — бактери­альным ЛПС — в большей степени активирует распластывание, а фагоцитарную активность по­вышает в меньшей степени. В более поздние сро­ки после введения исследуемого препарата (1.5— 24 ч) дальнейшего нарастания количества МФ в брюшной полости и их функциональной активно­сти не наблюдали. В отличие от этого после вве­дения ЛПС количество МФ в брюшной полости и их функциональная активность достигали мак­симального уровня лишь через 24 ч.

В связи с выявленными временными различия­ми стимулирующих эффектов при изучении влия­ния препаратов на интенсивность очищения брюшной полости мышей от введенных бактерий S. typhimurium (клиренс) ЛПС вводили за 24 ч, а ТБОП — за 1 ч до заражения. Для оценки клиренса вычисляли средние разности логариф­мов концентрации бактерий через 1 ч после за­ражения у мышей контрольных и опытных групп. Было обнаружено значительное отставание ин­тенсивности клиренса у мышей, получивших за 4 сут до заражения по 1 мл среды с тиогликолятом, по сравнению с контролем.

На рисунке видно, что ни ТБОП, ни стандарт­ный активатор МФ бактериальный ЛПС не вли­яют на интенсивность очищения брюшной поло­сти от введенных бактерий. Однако на фоне де­фекта бактерицидности МФ, индуцированного предварительным введением среды с тиогликолятом, оба препарата в равной степени достоверно повышают исходно сниженную интенсивность очищения брюшной полости мышей. Под влияни­ем ТБОП, как и под влиянием бактериального ЛПС, наблюдали нормализацию уровня очище­ния брюшной полости, т. е. коррекцию модели­рованного в эксперименте дефекта бактерицид­ности МФ.

Таким образом, у изученного синтетического антиоксиданта ТБОП выявлена способность ак­тивировать мышиные перитонеальные МФ при непосредственном воздействии in vitro. После внутрибрюшинного введения того же препарата наблюдали повышение количества МФ в брюш­ной полости и их функциональной активности. У мышей с предварительно индуцированным де­фектом функции клиренса брюшной полости пре­парат способствовал восстановлению нормаль­ного уровня антибактериальной защиты. По всем изученным тестам активирующего действия на МФ синтетический антиоксидант не уступал стан­дартному активатору МФ — бактериальному ЛПС. При введении мышам ТБОП наблюдали более ранние проявления активации МФ по срав­нению с эффектами ЛПС.

Показатели очищения брюшной полости мышей от введен­ных бактерий после инъекции испытуемых препаратов.

По оси ординат — средние величины разностей логарифмов кон­центрации бактерий в брюшной полости (М±т). I — доверитель­ный интервал для контрольных мышей; // — доверительный ин­тервал для мышей через 4 сут после введения среды с тиоглико-латом. а — через 1 ч после введения ТБОП; б — через 1 ч после введения ТБОП на фоне введения среды с тиогликолатом; в — через 24 ч после введения ЛПС; г — через 24 ч после введения ЛПС на фоне введения среды с тиогликолатом.

ФАГОЦИТАРНАЯ АКТИВНОСТЬ МАКРОФАГОВ ПЕРИТОНЕАЛЬНОГО ЭКССУДАТА

МЫШЕЙ ПРИ ДЕЙСТВИИ ПРЕПАРАТОВ ПЛАТИНЫ

Макрофаги способны вызывать лизис различных типов опухолевых клеток, не повреждая нормальные клетки того же гистоге­неза. Нормальные «неармированные», неактивированные макрофаги осуществляют вза­имодействие с опухолевыми клетками на стадии их возникновения и в период начальной стадии их развития. Вещества-цитостатики, применяемые в химиотерапии новообразований, оказывают влия­ние на иммунную систему макроорганизма, в част­ности, поражая и систему мононуклеаров. Влия­ние различных классов цитостатиков на функцио­нирование макрофагального звена иммунитета до­статочно глубоко изучено. Однако данных о характере влияния нового класса противоопухо­левых соединений — координационных соеди­нений платины на макрофаги в доступной лите­ратуре не встречается. Было проведено исследование — определение действия препаратов платины на фагоцитарную активность макрофа­гов перитонеального экссудата. В качестве препаратов были взяты Оксоплатина (цисдихлородиаминтрансдигидроксоплатина IV производства фирмы «Lachema») и циклоплатам (аминциклопептиламин-5-малатоплатина (II) отечественного производства).

В ходе про­веденных исследований было установлено, что привнесении препаратов платины непосредственно в пробирки для счета при регистрации хемилюминесценции в опытах in vitro происходит не­значительное увеличение высвобождения гидроксильного радикала (ОН~), супероксиданиона (О2-), синглетного кислорода ('02), перекиси во­дорода (H202), что косвенно позволяет судить о стимуляции фагоцитарной активности пери­тонеальных макрофагов препаратами платины in vitro. Так, для циклоплатама максимальное увеличение образования активных метаболитов кислорода наблюдалось в дозе, равной 0.5 МПД (LD=23 мг/кг), и индекс хемилюминесценции составлял 3,2 по сравнению с 2,28 в контроле, тогда как добавление оксоплатины в дозе, равной 1/4 МПД, к суспензии перитонеальных макрофагов вызывало увеличение индекса хемилюменисценции с 1,69 в контрольных пробах до 2,62 в опыте.

Неоднозначные и достаточно противоречивые результаты были получены при дальней­шем исследовании влияния оксоплатины и цикло­платама на фагоцитарную функцию перитонеаль­ных макрофагов in vivo (при введении препа­ратов внутрибрюшинно мышам). Введение оксоплатины и цикло­платама неиммунным мышам вызывало подавле­ние фагоцитоза (на 1-й день после введения циклоплатама во всех дозах, на 1-й и 2-й дни после введения оксоплатины во всех дозах, с уста­новлением стимулирующего влияния в последую­щие дни для обоих препаратов).

Однако введение оксоплатины и циклоплатама в тех же дозах в аналогичные сроки совмест­но с антигенной стимуляцией дало противопо­ложный эффект. На 1-й день после введения оба препарата вызвали дозозависимое увеличе­ние индекса хемилюминесценции на 2 и более порядка (индекс хемилюминесценции Ихл для оксоплатины в дозе 1,0 МПД составил 106,9, для циклоплатама в дозе 1,0 МПД — 407,0, тогда как в контроле — 1,3—2,5). В последую­щие дни после введения препаратов иммунным мышам стимулирующее влияние на фагоцитар­ную активность перитонеальных макрофагов про­слеживалось отчетливо для всех доз, но носило менее выраженный характер.

Предполагается, что при объяснении подоб­ного явления нельзя оставить без внимания факт гетерогенности перитонеальных макрофагов и неизбежной реакции на внутрибрюшинное вве­дение аллоантигена, выражающейся в перераспределении субпопуляций перитонеальных макрофа­гов в пользу так называемых воспалительных в отличие от резидентных. Не исключено появ­ление незрелых резидентных макрофагов, так­же характеризующихся большей пероксидазной активностью.

Однако возможно, что при подобной по­становке реакции регистрировался факт захвата и поглощения перитонеальными макрофагами частиц, коими могли быть (и явно были) не толь­ко гранулы зимозана, но и гетерологичные эри­троциты барана. В пользу этого говорят дан­ные работы, проделанной X. М. Исиной в ла­боратории И. Я. Учителя , о том, что именно в 1-е сутки после иммунизации происходят мак­симальный захват, поглощение и разрушение макрофагами гетерологичных эритроцитов с по­следующей (к 48-му часу) стабилизацией про­цесса. Поэтому делается вывод, что 1-е сутки введения не могут рассматриваться как осново­полагающие при утверждении стимулирующего влияния оксоплатины и циклоплатама на фаго­цитарную активность перитонеальных макрофа­гов, тогда как результаты последующих дней яв­ляются достоверным подтверждением подобного явления

ИЗУЧЕНИЕ ФАГОЦИТАРНОЙ АКТИВНОСТИ ПЕРИТОНЕАЛЬНЫХ МАКРОФАГОВ В

ОТ­НОШЕНИИ YERSINIA PESTIS С ДЕФЕКТНЫ­МИ И ПОЛНОЦЕННЫМИ

FRA-ГЕНАМИ

Известно, что возможность развития чумной инфекции во многом опреде­ляется исходом взаимодействия кле­ток возбудителя Y. pestis с фагоцитами, который зависит от степени бактери­цидной активности макрофагов (МФ) и наличия антифагоцитарных факторов у микробов. К антифагоцитарным суб­станциям Y. pestis относят термоиндуцируемый капсульный антиген «фрак­ция I», антигены вирулентности V, W, I и др.. Не исключено существова­ние неидентифицированных компонен­тов с той же функцией. Действие фрак­ции I связывают с ингибицией бактери­цидной активности МФ, ее участие в процессе захвата бактерий МФ отри­цается. Специфическая иммунизация животных приводит к изменению МФ, которое способствует ускорению погло­щения вирулентных и вакцинных штам­мов Y. pestis и последующего их лизи­са. В последние годы установлено, что детерминанты фракции I и VW-антигенов локализованы на плазмидах, которые, вполне вероятно, несут и другую генетическую информа­цию, пока неидентифицированную, но, возможно, связанную с антифагоцитар­ной активностью Y. pestis. Имеющиеся в литературе данные о фагоцитозе при чуме получены в опытах, в которых не идентифицировалось, связано ли нару­шение синтеза исследуемых антигенов с дефектом отдельных конкретных ге­нов или утратой соответствующей плазмиды целиком. Последнее событие мо­жет вызвать одновременно дефектность по другим, еще не исследованным анти­генам. Это еще требует уточнения.

Цель работы — определение вклада фракции I в процесс взаимодействия возбудителя чумы с индуцированными МФ иммунизированных и интактных экспериментальных животных.

В опытах использовали природный вирулентный штамм Y. pestis 4 (Fra+) и изогенный штамм 4 (Fra-), у которого синтез фракции I был «выключен» встройкой элемента Tn10 в соответствующий ген плазмиды . Испытывали по 3 клона каждого штамма. Бактерии пе­ред опытом выращивали в течение 48 ч при 28 и 37 °С на агаре LB («Difco») рН 7,2. Фагоцитоз изучали in vitro в культуре индуцированных перитонеальных МФ морских свинок и белых мышей, интактных и иммунизированных подкожно однократно в дозе 106 мик­робных клеток (МК) чумной вакциной. В опытах с фа­гоцитами нагрузка составляла 50 мик­робных клеток (мк) на МФ. Пробы ин­кубировали при 37 °С в течение 6 ч. Интенсивность фагоцитоза оценивали с помощью показателя активности фаго­цитов (АФ) и индекса завершенности фагоцитоза (ИЗФ).

Все изученные бакте­рии, выращенные при 28 °С (28°-культуры), когда синтез фракции I нахо­дится на очень низком уровне, погло­щались одинаково вне зависимости от способности их fra-генов нормально функционировать и от того, выделены испытываемые МФ от иммунизирован­ных или интактных животных. В опытах с бактериями, выращен­ными при 37 °С (37°-культуры), эффек­тивность захвата (АФ) во всех пробах была значительно ниже, чем при 28 °С.. Поскольку снижение наблюда­ли у штаммов как способных, так и неспособных продуцировать фракцию I, сделано предположение, что в 37°-культуре имеет место индукция синтеза или проявление функций не фракции I, а каких-то дополнительных компонен­тов клеточной стенки бактерий, мешаю­щих установлению контакта бактерий и МФ. Необходима дальнейшая работа по идентификации этих компонентов.

МФ интактных белых мышей одина­ково захватывали бактерии Fra+- и Fra-, МФ иммунизированных мышей несколько активнее поглощали Fra+-бактерии. МФ морских свинок незави­симо от того, получены они от интакт­ных или иммунизированных животных, более активно захватывали Fra+-бакте­рии. Похоже, что в организме морских свинок в отношении испытанных МФ фракция I проявляет себя как неспе­цифический стимулятор фагоцитоза, тогда как в МФ белых мышей должна произойти специфическая перестройка, сопровождающая иммунизацию, преж­де чем фракция I окажется способной слабо стимулировать захват бактерий возбудителя. Более высокие значения АФ у вакцинированных морских свинок в отношении как Fra+-, так и Fra--культур возбудителя чумы, выращен­ных при 37 °С, позволяют думать также о появлении у бактерий при этой тем­пературе культивирования дополни­тельных факторов, которые обладают избирательной активностью именно в отношении МФ морских свинок. Еще более выраженный стимулирующий эф­фект этих дополнительных факторов проявляется при контакте МФ иммуни­зированных морских свинок с 37°-культурами, содержащими фракцию I, что позволяет предположить также и спе­цифический элемент действия этого ан­тигена, направленный на усиление захвата бактерий указанными фагоци­тами.

Иными словами, данные эксперимен­тов свидетельствуют, что помимо фрак­ции I, возбудитель чумы, выращенный при 37 °С, содержит компоненты, сни­жающие фагоцитарную активность МФ интактных и иммунизированных жи­вотных, и компоненты, специфически способствующие захвату бактерий МФ морских свинок. Действие последних частично или полностью в присутствии фракции I нейтрализует эффект неиден­тифицированных негативных факторов. Фракция I способствует захвату бак­терий чумы МФ и более значима для морских свинок.

В общем виде выводы по данному эксперименту можно сделать следующие: 1. Иммунизация чумной вакциной морских свинок индуцирует специфи­ческую в отношении фракции I пере­стройку в макрофагах, обусловливаю­щую усиление захвата и переварива­ния Fra+-Y. pestis выросших при 37 °С. Подобного не происходит у белых мышей.

2. Дефект Y. pestis по fra-генам и отсутствие фракции I обусловливают более выраженное снижение эффектив­ности захвата бактерий, выращенных при 37 °С макрофагами морских сви-

нок, но не белых мышей и большую степень переваривания макрофагами морских свинок при всех условиях опы­та, а макрофагами белых мышей — только в отношении 37°-культур.

3. Как в захвате, так и завершении фагоцитоза роль фракции более сущест­венна в макрофагах морских свинок.

ВЛИЯНИЕ МОДИФИКАТОРОВ БИОЛОГИЧЕСКОГО ОТВЕТА ПРИРОДНОГО

ПРОИСХОЖДЕНИЯ НА ФУНКЦИОНАЛЬНУЮ АКТИВНОСТЬ МАКРОФАГОВ

(ОНКОЛОГИЧЕСКИЙ АСПЕКТ)

Несмотря на значительные успехи химиотера­пии некоторых видов злокачественных новообразо­ваний, результаты применения противоопухолевых химиопрепаратов при наиболее распространенных локализациях рака остаются малоудовлетвори­тельными. Становится все более очевидным, что одним из основных препятствий для успешной хи­миотерапии злокачественных опухолей является гетерогенность популяции неопластических клеток, которая выражается, в частности, в наличии в ней клонов клеток, резистентных к химиотерапевтиче-ским агентам. Более того, такая резистентность может относиться к целым классам препаратов, что может ограничивать эффективность и комп­лексной полихимиотерапии. Еще более ос­ложняет положение генетическая нестабильность опухолевых клеток, которые, имея высокий уровень спонтанных мутаций, чрезвычайно легко подвергаются мутагенному воздействию химиопре­паратов и продуктов их метаболизма. Это в значительной мере усиливает гетерогенность опухоле­вой популяции, способствует генерации еще боль­шего числа резистентных к химиотерапии клонов, усиливает их способность к метастизированию, рецидиву на фоне продолжающейся химио­терапии.

В конечном счете даже весьма радикальная (на 99,5 %) редукция опухолевой массы в про­цессе химиотерапии почти неизбежно приводит к возобновлению процесса за счет резистентных кло­нов — предшествовавших или возникших в про­цессе химиотерапии. Более того, такие кло­ны оказываются в далеко зашедшей стадии опухо­левой прогрессии и, следовательно, более злока­чественными.

В этих условиях вполне закономерными пред­ставляются поиски путей элиминации опухолевых клеток с так называемой множественной лекар­ственной устойчивостью с помощью других меха­низмов, в частности литического потенциала иммунокомпетентных клеток. Особый интерес в этом отношении представляют макрофаги. В отли­чие от других типов иммуноцитов их активность в меньшей степени подавляется в процессе интен­сивной циторедуктивной терапии, они способны к эффективным противоопухолевым реакциям в со­отношении эффектор/мишень, приближающемся к 1:1 и, инфильтрируя опухолевую строму, имеют достаточную возможность для контакта с опухоле­вой клеткой. Показана возможность актива­ции цитолитического действия макрофагов с по­мощью различных модификаторов биологического ответа (МБО) после воздействия противоопухо­левых химиопрепаратов, в то время как актив­ность других эффекторных систем может быть существенно подавлена. Поэтому в настоящее время идет активная разработка методов адъювантной иммунотерапии с включением активато­ров макрофагов. При этом предварительная оцен­ка эффекта последних проводится in vitro и в основном по способности индуцировать цитолитическую и цитостатическую активность. По сохранению такой способности в процессе приме­нения химиотерапевтических противоопухолевых препаратов оценивается и «совместимость» МБО с ними. Однако индукция цитотоксичности является только одной стороной активации макро­фагов, под влиянием МБО происходят другие зна­чительные изменения функциональной активности этих клеток, в частности усиливается продукция и секреция целого ряда ростовых факторов. В рамках такого подхода было изучено влияние БЦЖ и циклофосфамида на перитонеальные мак­рофаги мышей. Названные препараты выбраны как модельные в виду их достаточной изученности как индукторов противоопухолевой активности макрофагов in vitro и in vivo, а также достаточно широкого применения в клинической практике.

Известно, что цитотоксическая активность мак­рофагов in vitro достигает своего максимума к 48—72 ч культивирования, а затем быстро сни­жается. Была проведена оценка ростстимулирующей активности резидентных и БЦЖ-активированных макрофагов в процессе культивирования in vitro.

Установлено, что способность поддер­живать рост опухолевых клеток прогрессивно снижается у резидентных макрофагов и нарастает у БЦЖ-активированных. Если в первые 3 дня при­рост числа клеток на БЦЖ-активированных мак­рофагах достоверно ниже, чем на резидентных (что может быть объяснено цитотоксической ак­тивностью), то затем наблюдается противополож­ная ситуация.

Таким образом, если индуцированная БЦЖ-активация противоопухолевой активности макро­фагов носит преходящий характер, то активация продукции ростовых факторов более устойчива во времени. Более того, при тестировании цито­токсической и ростстимулирующей активности макрофагов, выделяемых из перитонеальной поло­сти мышей в различные сроки после введения БЦЖ, было выявлено, что цитотоксиче­ская активность (цитолитическая и цитостатиче­ская) максимальна на 10-й день. На 15-й и 20-й дни проявляется только цитолитическая, а цито­статическая активность исчезает. Ростстимулирующая активность максимальна на 15-й и 20-й дни. Следовательно, in vitro активация макрофагов БЦЖ приводит к транзиторной экс­прессии противоопухолевой активности и длительной устойчивой ростстимулирующей активности.

С учетом этих данных становится понятным характер взаимодействия БЦЖ-активированных макрофагов и опухолевых клеток в процессе дли­тельного ко-культивирования in vitro: в первые дни за счет цитотоксичности значительно снижается количество жизнеспособных клеток, одновременно цитостатические факторы тормозят их пролифера­цию, но затем благодаря выделяемым росто­вым факторам интенсивность пролиферации вы­живших опухолевых клеток значительно превы­шает таковую у резидентных макрофагов, в результате чего их общее количество достигает и даже превышает исходный уровень.

В ряде случаев при культивировании малых доз опухолевых клеток — до 10 на лунку (т. е. в соотношении эффектор/мишень 5000:1) — цито­токсической активности может быть достаточно для элиминации всей опухолевой популяции, од­нако в тех случаях, когда ростовая фракция пре­высит определенный порог цитотоксической актив­ности, наблюдается интенсивный рост оставшихся опухолевых клеток. Именно это объясняет отсут­ствие достоверности результатов культивирова­ния малых доз клеток, так как отклонения от сред­ней величины отличались большей амплитудой.

Таким образом, способность макрофагов, акти­вированных БЦЖ, контролировать рост опухоле­вых клеток in vitro ограничена и проявляется только в соотношениях эффектор/мишень, весь­ма далеких от реально возможного in vivo,— 500:1 — 5000:1. При этом противоопухолевая ак­тивность транзиторна, а опухольстимулирующая носит более длительный и устойчивый характер. Поэтому была предпринята попытка потенцировать противоопухолевую активность БЦЖ-активи­рованных макрофагов путем воздействия на них циклофосфамидом. По данным литературы, этот противоопухолевый препарат является вполне «совместимым» с БЦЖ-агентом (т. е. стимулирует БЦЖ-индуцированную цитотоксичность) и, сле­довательно, может быть компонентом комбиниро­ванной химиоиммунотерапии на основе примене­ния БЦЖ .

Циклофосфамид вводили мышам внутрибрюшинно в дозе 200 мг/кг, за 9 дней до того получивших также внутрибрюшинно 1 мг БЦЖ. На сле­дующий день перитонеальные клетки выделяли и оценивали их цитотоксическую активность, способ­ность поддерживать рост опухолевых клеток в суб­оптимальных концентрациях и влиять на рост автономно растущей опухолевой популяции в усло­виях ко-культивирования. Оказалось, что циклофосфамид самостоятельно индуцировал существенную цитолитическую и цитостатиче-скую активности, кроме того, достоверно усиливал БЦЖ-индуцированную цитотоксичность.. При этом в присутствии макрофагов, активированных комби­нацией БЦЖ с циклофосфамидом, уровень пролиферации опухолевых клеток в зависимых от ростовых факторов концентрациях (102 клеток на лунку) был 2,9'104±3,25-103 и значительно пре­вышал таковой при культивировании опухолевых клеток на БЦЖ-активированных макрофагах — 3,7-103±1,4-102, практически не отличаясь от их роста в присутствии нестимулированных макрофа­гов — 3,2-104±4,82-103.

Таким образом, несмотря на весьма высокий уровень цитотоксичности макрофагов, индуциро­ванный их обработкой вслед за БЦЖ еще и цик­лофосфамидом, такие макрофаги теряли способ­ность даже к ограниченному контролю ко-куль-тивируемой с ними популяции опухолевых клеток.

С учетом весьма значительной в этой серии экс­периментов потери клеток под влиянием факторов цитотоксичности (в отдельных опытах цитолитическая активность достигала 70 %) и прироста клеток, сравнимого с таковым после ко-культиви­рования на резидентных макрофагах, можно счи­тать, что совместное применение БЦЖ и цикло­фосфамида оказывает аддитивное действие на продукцию ростовых факторов макрофагами.

Таким образом, имеющиеся в литературе дан­ные о совместимости БЦЖ и циклофосфамида, будучи совершенно справедливыми в отно­шении противоопухолевой активности активиро­ванных макрофагов, не отражают возможного ко­нечного результата такого совмещения, явно неже­лательного с клинической точки зрения. Следует отметить, что характер ответа макрофагов на ак­тивацию МБО in vivo имеет сходство с таковым in vitro. Как показано еще в первых работах по применению БЦЖ, иммунотерапия этим препара­том эффективна только в течение короткого срока, а затем происходит стимуляция опухолевого про­цесса, причем противоопухолевую активность макрофагов, достаточно быстро угасающую как in vitro, так и in vivo, как правило, не удается вос­становить повторными введениями препарата, ее вызвавшего, и в случае успеха такая реактивация кратковременна.

Данные литературы достаточно однозначно ука­зывают на отсутствие корреляции между цитотоксической активностью БЦЖ-активированных мак­рофагов in vitro и их влиянием на опухолевые клетки in.vivo. Если исходить из представлен­ных нами данных, это становится вполне объяс­нимым: уничтожение in vitro даже большинства опухолевых клеток при последующем стимулиро­вании роста оставшихся приводит к явному ни­велированию эффекта цитолитического действия, особенно если учесть его относительную кратко­временность по сравнению с ростстимулирующим действием. Кроме того, выявляемая in vitro цито-статистическая активность зависит от таких фак­торов, как аргиназа, истощение культуральной среды ввиду повышенного метаболизма активи­рованных макрофагов, продукция токсических радикалов, атомарного кислорода и др. В ус­ловиях in vivo эти эффекты могут не проявляться в связи с притоком аргинина, других питательных веществ к клеткам, наличием антагонистов ра­дикалов и т. д.

Как известно, при опухолевом процессе макро­фаги способствуют развитию опухоли на «орган­ном» уровне путем улучшения микроокружения (имеется в виду стимуляция ангиогенеза, форми­рование стромы опухоли, элиминация продуктов распада опухолевых клеток). Продуцируемые макрофагами иммуносупрессивные факторы, в частности простагландин Е2, способны инактивировать другие иммунологические механизмы рези-стентности к опухолевому росту. Такие фак­торы, как интерлейкин-1 (ИЛ-1), фактор некроза опухоли (ФНО), выделяемые активированными макрофагами, способны подавлять пролиферацию большей части известных линий опухолевых кле­ток, однако они являются и стимуляторами роста некоторых из них .

Учитывая высокую степень гетерогенности опу­холевой популяции и усиление роста таковой под влиянием продуктов активированных макрофа­гов, нельзя исключить появления устойчивых и даже зависимых от ФНО и ИЛ-2 клонов. И если в относительно непродолжительных до времени сроках взаимодействия макрофагов и опухолевых клеток в условиях экспериментальных моделей та­кие эффекты не проявятся, то в реальных ус­ловиях вероятностью такого отбора пренебрегать нельзя. Это особенно актуально, если учитывать, что макрофаги практически неизбежно вовлекают­ся в реализацию любого иммунотерапевтического воздействия, поэтому продемонстрирован­ные здесь негативные последствия их активации могут сказаться и на эффективности всей программы иммунотерапии, направленной изначально на другие эффекторы иммунной системы.

Таким образом, продукция макрофагами факто­ров, стимулирующих рост опухолевых клеток, яв­ляется весьма существенным компонентом ответа этих клеток на МБО. Соответственно при оценке и отборе потенциальных МБО необходимо оцени­вать не только их способность к индукции про­тивоопухолевых реакций, но и возможность экс­прессии побочной ростстимулирующей активности. Только углубленное изучение этого вопроса., направленного на выявление факторов, стимулирующих рост опухолевых клеток, путей их биосинтеза в макрофагах и их регуляцию, может лечь в основу разработки методов селек­тивного подавления нежелательных в онкологиче­ской ситуации ростстимулирующих свойств акти­вированных МБО макрофагов при одновременной сохранности и активации их противоопухолевой активности.

ПЕРИТОНЕАЛЬНЫЕ МАКРОФАГИ КАК МОДЕЛЬ ДЛЯ ИЗУЧЕНИЯ АТЕРОГЕННОГО

ПОТЕНЦИАЛА СЫВОРОТКИ КРОВИ

Накопление липидов в гладкомышечных клет­ках (ГМК) и макрофагах интимы аорты является характерной чертой атеросклероза человека и экспериментальных животных. Было показано, что сыворотки крови больных ишемической болезнью сердца (ИБС) с ангиографи-чески подтвержденным коронарным атеросклеро­зом в отличие от сывороток крови здоровых лиц обладают способностью вызывать накопление липидов в культивируемых клетках интимы аорты человека. Это свойство было названо атерогенностью, поскольку накопление липидов сопро­вождалось другими атеросклеротическими прояв­лениями на клеточном уровне — усилением пролиферативной активности и синтеза внеклеточ­ного матрикса. Однако связь между атерогенностью и атеросклерозом окончательно не вы­яснена.

Исследования по этой проблеме основаны на первичном культивировании субэндотелиальных клеток интимы аорты человека. Сложность рабо­ты обусловлена необходимостью постоянного обеспечения стерильным аутопсийным мате­риалом, а также высокой стоимостью выделения и культивирования клеток.

Ранее было показано, что способностью аккумулировать внутриклеточно холестерин при культивировании с атерогенной сывороткой обла­дают ГМК аорты человека и мононуклеарные клетки периферической крови. Эти данные позволяют считать, что для определения атеро-генности сыворотки крови могут быть использо­ваны не только субэндотелиальные клетки ин­тимы аорты.

Целью работы было определение возможности использования легкодоступных перитонеальных макрофагов для определения атерогенности сыво­ротки крови.

Кровь для исследований бы взята у больных ИБС, подтвержденной при коронарной ангиографии, и здоровых доноров. ГМК были выделены из аорты мужчин, взятой в асептических условиях спустя 24 ч после внезапной смерти, ступившей от инфаркта миокарда. Человеческие перитонеальные макрофаги были выделены из асцитической жидкости больных недостаточностью кровообращения. Мышиные перитонеальные МФ получены от нестимулированных мышей.

Влияние сыворотки крови здоровых доноров и больных ИБС на уровень холестерина в клетках

Тип клеток

Контроль, мкг

Уровень холестерина в клетках, % контроль­ных величин

на 1 мг белка

здоровые доноры

больные ИБС

Реферат опубликован: 26/04/2005 (18146 прочтено)