Страница: 6/9
В случае, ежели необходимы активированные МФ, то их активацию проводят путем
Иммунизации животного введением различных сывороток или мощных антигенов,
Индуцированием очага септического воспаления брюшины (введение токсина в р-ре пептона, введение взвеси убитых или живых микроорганизмов).
Дальнейшие действия совпадают с уже названными.
Представляет интерес также выделение человеческих МФ. Обычно, их получают из асцитической жидкости больных с недостаточностью кровообращения III степени. Затем их осаждают центрифугированием (400g, 10 мин), замораживают при температуре жидкого азота. После размораживания их помещают в специальные чашки со средой и культивируют.
Подчас непосредственно МФ полученные из перитонеального экссудата служат лишь для регистрации опыта поставленного над животным in vivo и их культивирование носит только диагностических характер.
II.Регистрация результатов
После постановки опытов возникает резонный вопрос, а как обнаружить изменение активности МФ, как определить те изменения, повлиявшие на работу фагоцитирующих клеток. В нашей стране наиболее широко используется несколько методов.
Для исследования поглотительной фазы фагоцитоза используют различные тест-объекты. Ими могут служить кроме микробов эритроциты и различные индифферентные частицы: латекса, туши, кармина, коллоидного угля, кадмия. Поглотительную активность фагоцитов оценивают прямым визуальным подсчетом поглощенных микробов или других частиц внутри МФ, а также по числу частиц, оставшихся непоглощенными, например частиц латекса, с помощью электронного счетчика частиц, эритроцитов по концентрации гемоглобина спектрофотометрически, эмульгированных частиц масляного красного со спектрометрической регистрацией или меченных флюоресцеинизотиоцианатом микрококков с помощью флюориметра. Высокая точность и производительность характеризуют метод изучения фагоцитоза флюоресцирующих частиц латекса с помощью автоматического проточного цитофлюо-риметра. При использовании прямого визуального метода рассчитывают фагоцитарный индекс (ФИ) — процент фагоцитирующих клеток от общего числа, фагоцитарное число (ФЧ) — среднее количество частиц, захваченных одной клеткой. Отдельно учитывают результаты через 1 и 3 ч: соответственно ФИ1, ФИ3, ФЧ1 и ФЧ3 , а также коэффициент фагоцитарного числа (КФЧ): отношение ФЧ1 к ФЧ3 — показатель, характеризующий скорость фагоцитоза.
Необходимо помнить, что эффективность всех этих показателей зависит от ряда условий, таких как длительность инкубации, формы дна сосуда — круглой и конической (в конических пробирках наблюдались более высокие показатели фагоцитоза, что, видимо, обусловлено стимулирующим влиянием короткодистанционного взаимодействия), pH среды, содержания кислорода и углекислоты.
Оценка хемотаксиса лейкоцитов осуществляется двумя распространенными методами. Метод Бойдена основан на принципе прохождения лейкоцитов из одной половины камеры со взвесью клеток в другую половину с хемоатрактантом, разделенных между собой мембранным фильтром. Для изучения хемотаксиса макрофагов применяют фильтры с размером пор соответственно 5— 8 мкм. Имеющиеся разновидности метода Бойдена включают двухфильтровый и радиоизотопный варианты. Другой метод основан на хемотаксисе под слоем агарозы. В качестве хемоатрактанта чаще используют обработанную зимозаном или липополисахаридом сыворотку, казеин, фильтрат культуры Е. coli или других микроорганизмов, синтетические формилпептиды.
Движение клеток при отсутствии хемотаксического стимула дает характеристику
случайной двигательной активности (спонтанная миграция) фагоцитов.
Измерение эластичности клеток также можно осуществить в камерах Бойдена.
Адгезивные свойства фагоцитов оценивают по прилипаемости на поверхности стекла
или в колонках с бусами. Между способностью к распластыванию макрофагов, оп-
ределяемой под фазово-контрастным микроскопом, и фагоцитозом имеется
определенная корреляция
Для оценки уровня активности МФ используется полярографический метод (потребление кислорода), НСТ-тест (восстановление нитросинего тетразолия), йодирование (переход радиоактивного меченого йода в кислотонерастворимый осадок), окисление глюкозы (образование молекул 14СО2 при окислении глюкозы-1-14С). Данные тесты основаны на том, что активация МФ сопровождается кислородзависимым метаболическим «взрывом». Классическим из данных методов стал НТС-тест. Дело в том, что активированные фагоциты способны поглощать нитросиний тетразолий (НСТ) и восстанавливать его в формазан. НСТ-тест позволяет дифференцировать активированные и интактные фагоциты, но его нельзя считать количественным, так как визуальная оценка результатов субъективна
Также для определения бактерицидной способности МФ используется хемолюминесцентный метод, предложенный сравнительно недавно. Как известно, фагоцитоз нейтрофилами и макрофагами сопровождается генерацией активных форм кислорода (О2-, Н2О2, ОН-), индуцирующих явление хемилюминесценции. Последняя пропорциональна интенсивности генерации фагоцитами активных форм кислорода и может служить косвенным критерием их фагоцитарной способности, тем более что образуемые продукты обладают выраженными бактерицидными свойствами. Метод анализа хемилюминесценции используется в клинике и эксперименте.
Среди методов регистрация хемилюминесценции (ХЛ) является наиболее чувствительным и информативным методом функциональной оценки фагоцитирующих клеток, но вместе с тем и одним из наиболее сложных, не столько в методическом плане, сколько в понимании природы биохимических и физических процессов, которые приводят к излучению света. Механизмы, лежащие в основе ХЛ фагоцитов, сложны и недостаточно изучены. Свечение может возникать в реакции O2+O1=2O2+hV, важную роль могут играть радикалы ОН-. Анализ различных ингибиторов свечения приводит к мысли, что синглетный кислород, гидроксильный радикал и перекись водорода вовлечены в процесс ХЛ.
ХЛ фагоцитирующих клеток значительно усиливается в присутствии люминола или
люцигенина.
Предложено много методов регистрации ХЛ фагоцитарных клеток, эти методы можно разделить на 2 основных класса.
/. Регистрация собственной ХЛ. Усиление собственной ХЛ фагоцитирующих клеток наблюдается при стимуляции опсонизированным зимозаном, бактериями, частицами латекса. Собственная ХЛ клеток имеет низкую интенсивность и лежит в широком спектральном диапазоне с максимумом в области 400—500 нм. Регистрация ХЛ требует высокий чувствительности прибора и достаточного количества выделения клеток (обычно не менее 106 клеток). Эритроциты, гемоглобин, сыворотка крови ингибируют ХЛ.
2. ХЛ в присутствии люминола. Свечение имеет на 2— 3 порядка большую интенсивность, чем собственная ХЛ. Усиление ХЛ наблюдается при действии зимозана, бактерий, частиц латекса, комплексов антиген — антитело, ионофора кальция, хемотаксических пептидов. ХЛ может наблюдаться в суспензии как выделенных, клеток, так и клеток в сыворотке крови.
Таким образом, хемилюминесцентный метод позволяет проводить быструю количественную оценку фагоцитарной и бактерицидной активности клеток. Он может использоваться при исследовании малых количеств биологического материала крови, или может служить как для оценки состояния клеток, так и для оценки опсонической активности сыворотки и влияния лекарственных препаратов.
Наиболее точными и быстрыми методами определения фагоцитарной активности лейкоцитов являются радиометрические. Так, поглотительную способность оценивают по уровню включения изотопа в фагоцитирующие клетки. Для этого используют меченные Сr эритроциты, радиоактивную масляную эмульсию или микробы, меченные 14С-глицином, 3Н-лейцином, 3Н-уридином, или частицы 192Ir. Иногда фагоцитоз оценивают по уменьшению метки (32Р) во внеклеточной среде.
Радиометрические методы отличаются быстротой постановки и объективностью оценки результатов. Как правило, в конце инкубации микробов с фагоцитами последние разрушают осмотическим лизисом, замораживанием — оттаиванием или дезоксихолатом натрия, затем добавляют на 30 мин при 37°С 3Н-тимидин и подсчитывают радиоактивность осажденных на фильтре бактерий. С помощью двойной метки определяют одновременно поглотительную и бактерицидную функцию лейкоцитов. Для этого предварительно метят микробы одним из изотопов (14С-фенилаланин, 14С-ацетат натрия), а затем в конце инкубации разрушают фагоциты и вносят 3Н-тимидин. Радиоактивность первоначально меченых микробов, включенных в фагоциты, будет отражать их поглотительную функцию, а радиоактивность, включенная в микробы, после разрушения фагоцитов будет характеризовать их бактерицидность. Существуют авторадиографические методы оценки завершенности фагоцитоза по включению изотопа в процессе инкубации на стеклах монослоя фагоцитов с микробами.
Одним из показателей функциональной активности макрофагов является уровень активности 5’-нуклеотидазы. Активность данного фермента определяют в суспензии не разрушенных МФ по методу Туманян и Кириличевой. Метод отличается простотой и точностью, достоверностью, достаточно часто используется.
III.Некоторые моделируемые процессы.
СНИЖЕНИЕ БАКТЕРИАЛЬНОЙ АКТИВНОСТИ ПЕРИТОНЕАЛЬНЫХ МАКРОФАГОВ МЫШЕИ В УСЛОВИЯХ СОЧЕТАННОГО ПРИМЕНЕНИЯ СТАФИЛОКОККОВОГО
ЭНТЕРОТОКСИНА ТИПА А И ЭНДОТОКСИНА
Механизмы патогенного действия стафилококковых энтеротоксинов (СЭ) изучены недостаточно. Известно, что блокада ретикулоэндотелиальной системы (РЭС) торотрастом повышает чувствительность животных к рвоте, индуцированной СЭ. Это предполагает, что функциональный статус РЭС играет важную роль в ответе организма на энтеротоксин. Данные литературы свидетельствуют и о возможности влияния СЭ на функционирование фагоцитирующих клеток. Во-первых, введение СЭ обезьянам через желудочный зонд приводит к развитию острого гастроэнтерита с экссудацией нейтрофилов, макрофагов и другими признаками воспаления. Во-вторых, важнейшим свойством СЭ является способность сенсибилизировать животных к летальному действию эндотоксинов грамотрицательных бактерий (липополисахарид — ЛПС), что ставит их в один ряд с веществами, вызывающими гиперактивацию РЭС, и также оказывающими сенсибилизирующее действие. Принимая во внимание постоянный контакт организма с условно-патогенными бактериями, а соответственно и с эндотоксинами кишечной микрофлоры, исследование макрофагальных функций, ответственных за элиминацию микроорганизмов в условиях воздействия СЭ и при сочетанием применении их с ЛПС, приобретает особую актуальность. В связи с этим, задачей опыта явилось изучение основных закономерностей изменения фагоцитарной и бактерицидной функций макрофагов под действием СЭ типа А (СЭА) и ЛПС.
I серию опытов по изучению фагоцитарной и бактерицидной активности проводили с макрофагами, полученными от мышей следующих групп: 1-я — через 2 ч после инъекции энтеротоксина, 2-я и 3-я — через 24 ч после введения СЭА и ЛПС в отдельности, 4-я — через 24 ч после введения эндотоксина на фоне СЭА. СЭА вызывал двукратное снижение общего числа клеток уже через 2 ч после инъекции; через 24 ч общее количество клеток по-прежнему оставалось пониженным. Если ЛПС у интактных мышей способствовал увеличению выхода клеток в брюшную полость, то на фоне СЭА их количество не только не возрастало под действием ЛПС, а даже достоверно уменьшалось по сравнению с контролем.
Изучение фагоцитарной и бактерицидной активности макрофагов через 2 ч после введения мышам СЭА выявило их заметное снижение по сравнению с показателями для контрольных животных. Через 24 ч после инъекции СЭА и ЛПС в отдельности наблюдалось усиление фагоцитоза. Выявленные закономерности изменения фагоцитарной функции макрофагов вполне согласуются с данными литературы, посвященными изучению клиренса угля у кроликов после введения стафилококковых знтеротоксинов. Н. Sugiyama также наблюдал бифазовые изменения фагоцитарной функции РЭС; подавление степени клиренса угля через 2ч после инъекции, сменяющееся его увеличением через сутки.
Бактерицидная активность макрофагов, полученных через 24 ч после обработки животных отдельно СЭА и ЛПС, также возрастала. В случае же совместного введения указанных токсинов функция поглощения изменялась незначительно, зато степень завершенности фагоцитоза резко снижалась. Необходимо отметить, что исследование морфологического состава клеток перитонеального экссудата мышей через 24 ч после инъекции СЭА и ЛПС не выявило существенных различий в процентном соотношении макрофагов в опытных группах животных. Поэтому можно утверждать, что выявленные изменения фагоцитарной и бактерицидной функций обусловлены влиянием исследуемых токсинов.
Для уточнения характера влияния СЭА и ЛПС на функциональную активность макрофагов следующую серию опытов провели в системе in vitro. С этой целью резидентные перитоне-альные макрофаги, полученные от интактных животных, инкубировали с токсинами в течение 24 ч. В данном случае функция поглощения изменялась в меньшей степени. Бактерицидная активность, также как и в опытах in vivo, повышалась под действием СЭА и ЛПС в отдельности. При одновременном добавлении токсинов к макрофагам бактерицидная функция увеличивалась, а в условиях, приближающихся к таковым in vivo, т. е. при добавлении ЛПС через 4 ч после СЭА, способность макрофагов убивать Staph. aureus также резко снижалась.
Таким образом, в условиях сочетанного применения СЭА и ЛПС происходит резкое снижение функции завершенного фагоцитоза макрофагов. Тот факт, что в условиях in vitro прослеживаются те же закономерности, что и в системе in vivo, предполагает, что СЭ оказывает непосредственное действие на макрофагальные функции. Учитывая, что фагоцитирующие клетки представляют собой первую линию защиты от чрезвычайно распространенных условно-патогенных микробов, снижение бактерицидных свойств в условиях синергического действия СЭ с эндотоксинами грамотрицательных бактерий в организме может привести к развитию тяжелых септических осложнений.
ОТМЕНА УСИЛИВАЮЩЕГО ФАГОЦИТОЗ ДЕЙСТВИЯ ОПСОНИНОВ С ПОМОЩЬЮ
ФРАГМЕНТОВ АНТИТЕЛ ПРОТИВ Fc-РЕЦЕПТОРОВ МАКРОФАГОВ
Один из наиболее важных и давно установленных иммунологических феноменов — усиление захвата фагоцитирующими клетками корпускулярных антигенов после их сенсибилизации IgG-антителами — оставался продолжительное время малоизученным. После выяснения принципов структурной организации молекулы IgG и обнаружения на поверхности фагоцитов и в том числе макрофагов рецепторов для Fc-участка IgG было постулировано, что опсонизирующие антитела обеспечивают усиление захвата корпускулярного антигена благодаря взаимодействию Fc-участка молекулы антитела с Fc-рецептором (FcR) макрофага. Единственным экспериментальным доказательством в пользу этого был факт отсутствия у Fab-фрагментов опсонизирующих антител способности усиливать захват корпускулярного антигена доказательства вовлечения FcR в процесс захвата опсонизированного корпускулярного антигена. Подобный экспериментальный подход нельзя рассматривать как адекватный для прямого доказательства вовлечения FcR в процесс захвата опсонизированного корпускулярного антигена. Исходя из сказанного, было решено получить прямые доказательства роли FcR в реализации механизма усиления захвата макрофагами корпускулярного антигена, сенсибилизированного IgG-антителами. Это было достигнуто при оценке влияния на указанный процесс Fab-фрагментов антител против FcR макрофагов, которые, как было установлено, препятствуют взаимодействию с макрофагами агрегированного IgG. Пре-инкубация перитонеальных макрофагов с Fab-фрагментами анти-FcR-антител полностью отменяла эффект усиления захвата макрофагами опсонизированного антигена.
В результате опыта было установлено, что Fab-фрагмент IgG из анти-FcR-сыворотки эффективно блокирует FcR мышиных макрофагов, препятствуя связыванию этими клетками гетерологичного агрегированного IgG. Эти данные хорошо согласуются с фактом блокирования FcR перитонеальных макрофагов бивалентными FаЬ-фрагментами из антиFcR. Эти данные в сочетании с результатами контрольных экспериментов, свидетельствующими об отсутствии способности блокировать FcR Fab-фрагментами IgG из антисыворотки против иммунного преципитата, указывают на возможность использования моновалентных Fab-фраг-ментов aнти-FcR-aнтитeл для изучения функции FcR макрофагов в реализации действия опсонинов. Следует подчеркнуть, что использование моновалентных фрагментов анти-FcR-антител имеет принципиальное значение при изучении функциональной роли FcR, поскольку в отличие от нерасщепленных антител или бивалентных FаЬ-фрагментов моновалентные Fab-фрагменты неспособны, связавшись с FcR, вызвать при 37 °С их латеральное перемещение по цитоплазматической мембране и последующий кэппинг.
Полученные данные свидетельствуют, что преинкубация макрофагов с Fab-фрагментами aнти-FcR-антител полностью отменяет эффект усиления фагоцитоза S.typhimurium(взятую как объект проверки эффективности фагоцитоза), обусловленный IgG-антителами кролика против этого микроорганизма. Собственно Fab-фрагменты aнти-FcR-антител не оказывают какого-либо влияния на фагоцитоз несенсибилизированных антителами бактерий. Если к макрофагам предварительно добавляли Fab-фрагменты антител кролика против иммунного преципитата, образованного яичным альбумином и IgG-антителами кролика против этого антигена, это не оказывало никакого влияния на процесс фагоцитоза сенсибилизированных антителами бактериальных клеток.
Таким образом, Fab-фрагменты анти-FcR-aнтител избирательно подавляют фагоцитоз только сенсибилизированных антителами бактерий. С учетом результатов контрольных экспериментов это служит несомненным доказательством в пользу того, что усиление захвата корпускулярного антигена после его опсонизации IgG-антителами обусловленно взаимодействием Fc-уча-стка опсонизирующих антител с FcR макрофагов.
Обращает на себя внимание тот факт, что макрофаги, предварительно обработанные Fab-фрагментами aнти-FcR-антител, менее эффективно поглощают сенсибилизированные антителами бактериальные клетки, чем несенсибилизированные. Этот результат можно объяснить, исходя из представления, что после сенсибилизации бактерий у части из них происходит стерическое экранирование участка клеточной поверхности, посредством которого микроорганизмы прикрепляются к макрофагам. Фагоцитоз таких бактериальных клеток осуществляется, по-видимому, после взаимодействия двух молекул антител или более через их Fс-участки с несколькими FcR на цитоплазматической мембране макрофага. Если указанное предположение справедливо, захват этой части сенсибилизированных бактериальных клеток будет невозможен после блокирования FcR с помощью Fab-фрагментов aнти-FcR-антител.
Полученные в настоящей работе данные открывают новые подходы для регуляции процесса иммунного фагоцитоза, что может иметь существенное значение для детального анализа роли этого процесса при различных патологических состояниях.
УСИЛЕНИЕ С ПОМОЩЬЮ ХИТОЗАНА РЕАКЦИИ КОНТАКТНОГО
ВЗАИМОДЕЙСТВИЯ МАКРОФАГА С ТИМОЦИТАМИ in vitro
Старая и многогранная проблема иммуностимуляции приобрела новое выражение в связи с поиском путей к созданию искусственных вакцин. Основные усилия в данном направлении связаны с получением конъюгатов вакцинирующих антигенных детерминант с природными или искусственно синтезированными полимерными носителями. Роль носителя в таком молекулярном комплексе должна состоять в усилении специфического ответа на избранную антигенную детерминанту.
При поиске эффективного носителя, который мог бы быть использован при конъюгации с антигеном, необходимо иметь сведения о его адъювантном эффекте и отсутствии побочных патогенетических свойств. В этой связи было обращено внимание на хитозан — гомополисахарид, выделяемый из хитина наружного скелета беспозвоночных. Молекулярная масса изучаемого вещества ~ 120000 дальтон.
Цель исследования — выяснить влияние хитозана на процесс контактного взаимодействия макрофага с тимоцитами в опытах in vitro. Обращение к данным клеточным типам не случайно. Известно, что взаимодействие макрофага с тимоцитами является дополнительным фактором трансформации недифференцированных тимусзависимых клеток в зрелые Т-лимфоциты. В связи с этим интересно определить, оказывает ли какое-либо влияние избранный гомополимер на один из самых ранних этапов становления иммунной системы — формирование функционально активной популяции зрелых Т-клеток.
Было проведено 3 серии опытов. В 1-й серии изучали характер взаимодействия сингенных тимоцитов с прилипающими клетками перитонеального экссудата, которые инкубировали непосредственно перед постановкой реакции с одной из выбранных доз хитозана в течение различного времени. Установлено, что наиболее эффективно реакция гроздеобразования проходит при 30-минутной инкубации макрофагов с хитозаном. Количество тимоцитов, группирующихся вокруг макрофага, в 2,5 раза больше по сравнению с таковым в контроле. В этой же серии опытов решался вопрос об интенсивности взаимодействия анализируемых типов клеток в зависимости от дозы, использованного для инкубации хитозана, при оптимальном времени инкубации 30 мин. Выяснено, что наибольшее усиление реакции гроздеобразования наблюдается при добавлении в культуру 50 мкг полисахарида.
Во 2-й серии опытов анализ реакции гроздеобразования проведен в условиях предварительной 30- и 60-минутной инкубации тимоцитов с разными дозами хитозана. Инкубация в течение как 30, так и 60 мин приводила к усилению контактного взаимодействия тимоцитов с макрофагами. Как и в предыдущей серии опытов, оптимальная доза, усиливавшая эффект гроздеобразования, равнялась 50 мкг.
В заключительной 3-й серии опытов проведено изучение интенсивности гроздеобразования при внесении хитозана непосредственно в реагирующую систему макрофаг—лимфоцит. Как и в 2 предыдущих сериях опытов, констатировано усиление контактного взаимодействия тимоцитов с макрофагами.
Для объяснения выявленных фактов необходимо иметь в виду, что хитозан является поликатионом. В то же время интегральный заряд как тимоцитов, так и макрофагов отрицательный. Возможно, эффект усиления контактного взаимодействия связан с электростатическими межклеточными притяжениями под влиянием хитозана, включающими 2 этапа: 1-й этап — ад-гезия положительно заряженного хитозана на макрофаге или тимоците, 2-й — непосредственное взаимодействие отрицательно заряженной клетки с клеткой-партнером, проинкубированной с поликатионом и несущей в результате этого больший положительный заряд. Подобное представление подкрепляется тем, что эффект усиления реакции гроздеобразования не связан со схемой инкубации и будет одинаков независимо от того, какой тип клеток подвергался инкубации с хитозаном.
Второй момент, который требует объяснения, — это незначительное время инкубации клеток с хитозаном, при котором обнаруживается эффект усиления контактного взаимодействия. Возможно, что отсутствие эффекта при более длительной инкубации связано с фагоцитозом высокомолекулярного полисахарида, вследствие чего происходит восстановление исходного заряда взаимодействующих клеток. Однако представленное объяснение должно быть подтверждено дополнительными экспериментальным фактами.
АКТИВАЦИЯ ФАГОЦИТАРНЫХ КЛЕТОК И КЛЕТОЧНОГО ИММУНИТЕТА
СИНТЕТИЧЕСКИМИ ПОЛИЭЛЕКТРОЛИТАМИ
Ряд перспективных неприродных полиэлектролитов, использующихся для создания синтетических вакцин, обладает многими иммуномоделирующими потенциями: они усиливают миграцию стволовых клеток, Т- и В-лимфоцитов, являются стимуляторами Т- и В-клеток, замещают хелперную функцию Т-лимфоцитов и макрофагов. Эти свойства обеспечивают сильное стимулирующее действие на реакции гуморального и клеточного иммунитета.
Вместе с тем недостаточно ясным остается вопрос об их действии на систему фагоцитарных клеток, формирование клеточного, в частности трансплантационного, иммунитета. Целью настоящей работы было изучение этих вопросов.
Методика исследований была следующей: мышам гибридам(CBAXC57BL/6) внутрибрюшинно вводили различные дозы полиэлектролитов однократно, выделяли МФ через 48 ч и анализировали их.
Введение полианиона NA-5 вызывает в макрофагах мышей активацию гликолиза. Например, в 3 экспериментах усиление гликолиза по сравнению с контрольными клетками было в 1,45, 2,35, 4,3 раза. Это очень сильная активация гликолиза в клетках, свидетельствующая о переходе их на более высокий физиологический уровень метаболизма. Значительно возрастала в клетках и интенсивность гексозомонофосфатного шунта: в 2 из 3 опытов введение полианиона сопровождалось появлением макрофагов со средней активностью окисления глюкозы, соответствующей 8,67+1,47 и 7,24+1,95 МФЕ на 10б клеток (в контроле 5,17+0,95 и 4,1 + 1,29 МФЕ на 106 клеток). Еще более сильной оказалась интенсификация цикла мочевины, различия которого по сравнению с контрольными клетками были уже порядковыми. Например, в опытах 1—3 они составляли соответственно 8,43, 11,54 и 2,06 раза.
Существенное усиление гликолиза обусловливалось также введением животным карбоцепного полиамина Н-З: в 2 из 3 опытов активация была значительной, для ЛДГ она составляла в опытных макрофагах соответственно 89,27+7,41 и 39,54±4,56 МФЕ на 106 клеток, в контрольных — 26,36+8,36 и 20,59+3,86 МФЕ на 106 клеток. Столь же выраженным было усиление активности окисления глюкозы, которое превышало его в опытных макрофагах в сравнении с контрольными в 3 экспериментах соответственно в 2,11, 1,28 и 1,41 раза.
Крайне значительной была интенсификация цикла мочевины, так как активация ключевого фермента АРГ возрастала в различных опытах в 3,65—54,6 раза..
В то же время активность поликатиона D11-100э была значительно менее выражена, он не влиял существенно на состояние гликолиза и гексозомонофосфатного шунта макрофагов. Однако все же активность цикла мочевины в клетках достоверно увеличивалась, хотя и менее существенно, чем под влиянием Н-3 и NA-5.
В макрофагах мышей, стимулированных полианионом NA-5, почти двукратно повышалась активность лизосомальных гидролаз, составляя в опыте 27,42+4,09 нМ Р/ч на 10б клеток и в контроле 15,04+3,66 нМ P/ч на 10б клеток. Активность КФ после введения мышам Н-3 была еще большей — 35,51+4,82 нМ P/ч на 10б клеток. Подобное усиление свидетельствует о существенном возрастании в макрофагах переваривающей способности.
У макрофагов мышей полианион NA-5 вызывал не только интенсификацию некоторых путей метаболизма, но и повышение экспрессии рецепторов к IgG, которое было нерезко выраженным, но статистически достоверным.
Дозозависимым оказался ответ клетки, выявляемый по генерации кислородных радикалов у мышей, которым вводили различные дозы полиамина Н-3. Так, если доза 0,5 мг/мышь подавляла хемилюминесценцию макрофагов при фагоцитозе, не изменяя ее при адгезии клеток на стекло, то дозы 1, 5 и 10 мг/мышь уже обусловливали существенное возрастание хемилю-минесценции при фагоцитозе частиц. При адгезии эти дозы также оказались активирующими, за исключением дозы 5 мг/мышь. Оптимальное усиление генерации активных кислородных радикалов вызывало введение животным 1 мг/мышь препарата Н-3 — в этом случае повышалась хемилюминесценция максимально и при фагоцитозе, и при адгезии. Дальнейшее увеличение дозы не сопровождалось повышением действия на клетки. Подобное наблюдение полностью подтверждается данными литературы о влиянии этого препарата на различные иммунологические параметры.
Таким образом, синтетические полиэлектролиты—полианион NA-5 и карбоцепный полиамин Н-3 вызывают активацию макрофагов, усиливая гликолиз, гексозомонофосфатный шунт, цикл мочевины, активность лизосомальных гидролаз. Препараты повышают также экспрессию на плазматической мембране макрофагов Fcv-peцепторов. Имеются, однако, особенности, состоящие в том, что если Н-3 вызывает усиление генерации макрофагами активных кислородных радикалов, полианион NA-5 оказывается в этом отношении неактивным. Поликатион D11-100э оказывает менее выраженное влияние на макрофаги, однако существенно повышает на них экс- прессию Рс7-рецепторов, интенсифицирует цикл мочевины.
Формирование трансплантационного иммунитета изучали у животных, которые получали однократно внутрибрюшинно по 1 мг/мышь препаратов в день трансплантации кожи.
Результаты свидетельствовали, что все 3 препарата вызывали усиление трансплантационного иммунитета, выражающееся в достоверном ускорении отторжения трансплантата у мышей, которым их вводили. Причем, как и на других моделях, в частности при анализе состояния макрофагов в условиях воздействия препаратов, активность полииона D11-100э уступала активности NA-5 и Н-3. Можно сделать вывод, что полиион NA-5 и карбоцепный полиамин Н3 обладают способностью усиливать клеточный Т-опосредованный иммунитет, менее активным был D11-100э.
АКТИВАЦИЯ МАКРОФАГОВ ПОД ВЛИЯНИЕМ СИНТЕТИЧЕСКОГО АНТИОКСИДАНТА
Сейчас общепринятой считается закономерность: активация макрофагов (МФ) сопряжена с метаболическим (окислительным) взрывом, с активацией глюкозомонофосфатного шунта (ГМФШ), с продукцией и секрецией высокоактивных нестабильных продуктов восстановления кислорода — супероксиданионов О2~, перекиси водорода (Н2О2), радикалов ОН~ и синглетного кислорода (О2) .
Образующийся при этом избыток токсичных супероксидных радикалов, а также липопереки-си, накапливающиеся в фагосомах МФ в процессе фагоцитоза, могут обусловливать окислительное повреждение клеточных мембран и связанное с этим подавление функций МФ. У МФ описана собственная система антиоксидантной защиты, включающая супероксиддисмутазу, удаляющую избыток супероксидных радикалов, а также глу-татионпероксидазу и НАДФ-зависимую глутатионредуктазу, нейтрализующие липоперекиси.
Однако при недостаточности эндогенных антиоксидантов могут возникать различные нарушения функций МФ. Было показано, что алкилзамещенные производные 3-оксипиридина (8 ОП), оказывающие умеренное антиокислительное действие, являются эффективными ингибиторами свободнорадикальных реакций и могут быть использованы для защиты от деструктивного влияния свободных радикалов.
Целью работы было изучение влияния синтетических антиоксидантов на функции МФ. Из ряда синтетических производных ОП были выбраны 2-третбутил-З-оксипиридин (ТБОП), у которого была описана способность стабилизировать мембраны эритроцитов. Исследование проводились в сравнении со стандартным активатором МФ — бактериальным липополисахарида (ЛПС из Е. coli О55).
Данные, полученные при изучении непосредственного влияния ТБОП в сопоставлении с ЛПС на перитонеальные МФ таковы: для активации ГФДГ достаточно получасовой инкубации клеток с ТБОП. Судя по показателям прироста активности фермента, эффект ТБОП аналогичен действию стандартного активатора — бактериального ЛПС. Доля распластанных МФ возрастает по сравнению с контролем уже через 2 ч инкубации с испытуемыми препаратами. На ранних сроках (2 ч) эффект ТБОП более выражен по сравнению с эффектом стандартного активатора — ЛПС. На более поздних сроках культивирования (24 ч), активирующий эффект ЛПС продолжает нарастать, в то же время доля распластанных МФ под влиянием ТБОП имеет тенденцию к понижению по сравнению с ранними сроками, но остается достоверно повышенной в сопоставлении с постепенно возрастающим контрольным уровнем.
После внутрибрюшинного введения ТБОП уже через 1 ч он вызывает отчетливое повышение количества клеток в брюшной полости за счет МФ с преимущественным накоплением крупных МФ, причем и этот эффект аналогичен действию ЛПС.
МФ, извлеченные из брюшной полости мышей через 1 ч после внутрибрюшинного введения ТБОП, отличались усиленным распластыванием по сравнению с МФ контрольных животных. Фагоцитарная активность этих же МФ была повышенной, судя по интенсивности захвата ими клеток Candida albicans. В этих условиях эксперимента ТБОП по сравнению со стандартным активатором — бактериальным ЛПС — в большей степени активирует распластывание, а фагоцитарную активность повышает в меньшей степени. В более поздние сроки после введения исследуемого препарата (1.5— 24 ч) дальнейшего нарастания количества МФ в брюшной полости и их функциональной активности не наблюдали. В отличие от этого после введения ЛПС количество МФ в брюшной полости и их функциональная активность достигали максимального уровня лишь через 24 ч.
В связи с выявленными временными различиями стимулирующих эффектов при изучении влияния препаратов на интенсивность очищения брюшной полости мышей от введенных бактерий S. typhimurium (клиренс) ЛПС вводили за 24 ч, а ТБОП — за 1 ч до заражения. Для оценки клиренса вычисляли средние разности логарифмов концентрации бактерий через 1 ч после заражения у мышей контрольных и опытных групп. Было обнаружено значительное отставание интенсивности клиренса у мышей, получивших за 4 сут до заражения по 1 мл среды с тиогликолятом, по сравнению с контролем.
На рисунке видно, что ни ТБОП, ни стандартный активатор МФ бактериальный ЛПС не влияют на интенсивность очищения брюшной полости от введенных бактерий. Однако на фоне дефекта бактерицидности МФ, индуцированного предварительным введением среды с тиогликолятом, оба препарата в равной степени достоверно повышают исходно сниженную интенсивность очищения брюшной полости мышей. Под влиянием ТБОП, как и под влиянием бактериального ЛПС, наблюдали нормализацию уровня очищения брюшной полости, т. е. коррекцию моделированного в эксперименте дефекта бактерицидности МФ.
Таким образом, у изученного синтетического антиоксиданта ТБОП выявлена способность активировать мышиные перитонеальные МФ при непосредственном воздействии in vitro. После внутрибрюшинного введения того же препарата наблюдали повышение количества МФ в брюшной полости и их функциональной активности. У мышей с предварительно индуцированным дефектом функции клиренса брюшной полости препарат способствовал восстановлению нормального уровня антибактериальной защиты. По всем изученным тестам активирующего действия на МФ синтетический антиоксидант не уступал стандартному активатору МФ — бактериальному ЛПС. При введении мышам ТБОП наблюдали более ранние проявления активации МФ по сравнению с эффектами ЛПС.
Показатели очищения брюшной полости мышей от введенных бактерий после инъекции испытуемых препаратов.
По оси ординат — средние величины разностей логарифмов концентрации бактерий в брюшной полости (М±т). I — доверительный интервал для контрольных мышей; // — доверительный интервал для мышей через 4 сут после введения среды с тиоглико-латом. а — через 1 ч после введения ТБОП; б — через 1 ч после введения ТБОП на фоне введения среды с тиогликолатом; в — через 24 ч после введения ЛПС; г — через 24 ч после введения ЛПС на фоне введения среды с тиогликолатом.
ФАГОЦИТАРНАЯ АКТИВНОСТЬ МАКРОФАГОВ ПЕРИТОНЕАЛЬНОГО ЭКССУДАТА
МЫШЕЙ ПРИ ДЕЙСТВИИ ПРЕПАРАТОВ ПЛАТИНЫ
Макрофаги способны вызывать лизис различных типов опухолевых клеток, не повреждая нормальные клетки того же гистогенеза. Нормальные «неармированные», неактивированные макрофаги осуществляют взаимодействие с опухолевыми клетками на стадии их возникновения и в период начальной стадии их развития. Вещества-цитостатики, применяемые в химиотерапии новообразований, оказывают влияние на иммунную систему макроорганизма, в частности, поражая и систему мононуклеаров. Влияние различных классов цитостатиков на функционирование макрофагального звена иммунитета достаточно глубоко изучено. Однако данных о характере влияния нового класса противоопухолевых соединений — координационных соединений платины на макрофаги в доступной литературе не встречается. Было проведено исследование — определение действия препаратов платины на фагоцитарную активность макрофагов перитонеального экссудата. В качестве препаратов были взяты Оксоплатина (цисдихлородиаминтрансдигидроксоплатина IV производства фирмы «Lachema») и циклоплатам (аминциклопептиламин-5-малатоплатина (II) отечественного производства).
В ходе проведенных исследований было установлено, что привнесении препаратов платины непосредственно в пробирки для счета при регистрации хемилюминесценции в опытах in vitro происходит незначительное увеличение высвобождения гидроксильного радикала (ОН~), супероксиданиона (О2-), синглетного кислорода ('02), перекиси водорода (H202), что косвенно позволяет судить о стимуляции фагоцитарной активности перитонеальных макрофагов препаратами платины in vitro. Так, для циклоплатама максимальное увеличение образования активных метаболитов кислорода наблюдалось в дозе, равной 0.5 МПД (LD=23 мг/кг), и индекс хемилюминесценции составлял 3,2 по сравнению с 2,28 в контроле, тогда как добавление оксоплатины в дозе, равной 1/4 МПД, к суспензии перитонеальных макрофагов вызывало увеличение индекса хемилюменисценции с 1,69 в контрольных пробах до 2,62 в опыте.
Неоднозначные и достаточно противоречивые результаты были получены при дальнейшем исследовании влияния оксоплатины и циклоплатама на фагоцитарную функцию перитонеальных макрофагов in vivo (при введении препаратов внутрибрюшинно мышам). Введение оксоплатины и циклоплатама неиммунным мышам вызывало подавление фагоцитоза (на 1-й день после введения циклоплатама во всех дозах, на 1-й и 2-й дни после введения оксоплатины во всех дозах, с установлением стимулирующего влияния в последующие дни для обоих препаратов).
Однако введение оксоплатины и циклоплатама в тех же дозах в аналогичные сроки совместно с антигенной стимуляцией дало противоположный эффект. На 1-й день после введения оба препарата вызвали дозозависимое увеличение индекса хемилюминесценции на 2 и более порядка (индекс хемилюминесценции Ихл для оксоплатины в дозе 1,0 МПД составил 106,9, для циклоплатама в дозе 1,0 МПД — 407,0, тогда как в контроле — 1,3—2,5). В последующие дни после введения препаратов иммунным мышам стимулирующее влияние на фагоцитарную активность перитонеальных макрофагов прослеживалось отчетливо для всех доз, но носило менее выраженный характер.
Предполагается, что при объяснении подобного явления нельзя оставить без внимания факт гетерогенности перитонеальных макрофагов и неизбежной реакции на внутрибрюшинное введение аллоантигена, выражающейся в перераспределении субпопуляций перитонеальных макрофагов в пользу так называемых воспалительных в отличие от резидентных. Не исключено появление незрелых резидентных макрофагов, также характеризующихся большей пероксидазной активностью.
Однако возможно, что при подобной постановке реакции регистрировался факт захвата и поглощения перитонеальными макрофагами частиц, коими могли быть (и явно были) не только гранулы зимозана, но и гетерологичные эритроциты барана. В пользу этого говорят данные работы, проделанной X. М. Исиной в лаборатории И. Я. Учителя , о том, что именно в 1-е сутки после иммунизации происходят максимальный захват, поглощение и разрушение макрофагами гетерологичных эритроцитов с последующей (к 48-му часу) стабилизацией процесса. Поэтому делается вывод, что 1-е сутки введения не могут рассматриваться как основополагающие при утверждении стимулирующего влияния оксоплатины и циклоплатама на фагоцитарную активность перитонеальных макрофагов, тогда как результаты последующих дней являются достоверным подтверждением подобного явления
ИЗУЧЕНИЕ ФАГОЦИТАРНОЙ АКТИВНОСТИ ПЕРИТОНЕАЛЬНЫХ МАКРОФАГОВ В
ОТНОШЕНИИ YERSINIA PESTIS С ДЕФЕКТНЫМИ И ПОЛНОЦЕННЫМИ
FRA-ГЕНАМИ
Известно, что возможность развития чумной инфекции во многом определяется исходом взаимодействия клеток возбудителя Y. pestis с фагоцитами, который зависит от степени бактерицидной активности макрофагов (МФ) и наличия антифагоцитарных факторов у микробов. К антифагоцитарным субстанциям Y. pestis относят термоиндуцируемый капсульный антиген «фракция I», антигены вирулентности V, W, I и др.. Не исключено существование неидентифицированных компонентов с той же функцией. Действие фракции I связывают с ингибицией бактерицидной активности МФ, ее участие в процессе захвата бактерий МФ отрицается. Специфическая иммунизация животных приводит к изменению МФ, которое способствует ускорению поглощения вирулентных и вакцинных штаммов Y. pestis и последующего их лизиса. В последние годы установлено, что детерминанты фракции I и VW-антигенов локализованы на плазмидах, которые, вполне вероятно, несут и другую генетическую информацию, пока неидентифицированную, но, возможно, связанную с антифагоцитарной активностью Y. pestis. Имеющиеся в литературе данные о фагоцитозе при чуме получены в опытах, в которых не идентифицировалось, связано ли нарушение синтеза исследуемых антигенов с дефектом отдельных конкретных генов или утратой соответствующей плазмиды целиком. Последнее событие может вызвать одновременно дефектность по другим, еще не исследованным антигенам. Это еще требует уточнения.
Цель работы — определение вклада фракции I в процесс взаимодействия возбудителя чумы с индуцированными МФ иммунизированных и интактных экспериментальных животных.
В опытах использовали природный вирулентный штамм Y. pestis 4 (Fra+) и изогенный штамм 4 (Fra-), у которого синтез фракции I был «выключен» встройкой элемента Tn10 в соответствующий ген плазмиды . Испытывали по 3 клона каждого штамма. Бактерии перед опытом выращивали в течение 48 ч при 28 и 37 °С на агаре LB («Difco») рН 7,2. Фагоцитоз изучали in vitro в культуре индуцированных перитонеальных МФ морских свинок и белых мышей, интактных и иммунизированных подкожно однократно в дозе 106 микробных клеток (МК) чумной вакциной. В опытах с фагоцитами нагрузка составляла 50 микробных клеток (мк) на МФ. Пробы инкубировали при 37 °С в течение 6 ч. Интенсивность фагоцитоза оценивали с помощью показателя активности фагоцитов (АФ) и индекса завершенности фагоцитоза (ИЗФ).
Все изученные бактерии, выращенные при 28 °С (28°-культуры), когда синтез фракции I находится на очень низком уровне, поглощались одинаково вне зависимости от способности их fra-генов нормально функционировать и от того, выделены испытываемые МФ от иммунизированных или интактных животных. В опытах с бактериями, выращенными при 37 °С (37°-культуры), эффективность захвата (АФ) во всех пробах была значительно ниже, чем при 28 °С.. Поскольку снижение наблюдали у штаммов как способных, так и неспособных продуцировать фракцию I, сделано предположение, что в 37°-культуре имеет место индукция синтеза или проявление функций не фракции I, а каких-то дополнительных компонентов клеточной стенки бактерий, мешающих установлению контакта бактерий и МФ. Необходима дальнейшая работа по идентификации этих компонентов.
МФ интактных белых мышей одинаково захватывали бактерии Fra+- и Fra-, МФ иммунизированных мышей несколько активнее поглощали Fra+-бактерии. МФ морских свинок независимо от того, получены они от интактных или иммунизированных животных, более активно захватывали Fra+-бактерии. Похоже, что в организме морских свинок в отношении испытанных МФ фракция I проявляет себя как неспецифический стимулятор фагоцитоза, тогда как в МФ белых мышей должна произойти специфическая перестройка, сопровождающая иммунизацию, прежде чем фракция I окажется способной слабо стимулировать захват бактерий возбудителя. Более высокие значения АФ у вакцинированных морских свинок в отношении как Fra+-, так и Fra--культур возбудителя чумы, выращенных при 37 °С, позволяют думать также о появлении у бактерий при этой температуре культивирования дополнительных факторов, которые обладают избирательной активностью именно в отношении МФ морских свинок. Еще более выраженный стимулирующий эффект этих дополнительных факторов проявляется при контакте МФ иммунизированных морских свинок с 37°-культурами, содержащими фракцию I, что позволяет предположить также и специфический элемент действия этого антигена, направленный на усиление захвата бактерий указанными фагоцитами.
Иными словами, данные экспериментов свидетельствуют, что помимо фракции I, возбудитель чумы, выращенный при 37 °С, содержит компоненты, снижающие фагоцитарную активность МФ интактных и иммунизированных животных, и компоненты, специфически способствующие захвату бактерий МФ морских свинок. Действие последних частично или полностью в присутствии фракции I нейтрализует эффект неидентифицированных негативных факторов. Фракция I способствует захвату бактерий чумы МФ и более значима для морских свинок.
В общем виде выводы по данному эксперименту можно сделать следующие: 1. Иммунизация чумной вакциной морских свинок индуцирует специфическую в отношении фракции I перестройку в макрофагах, обусловливающую усиление захвата и переваривания Fra+-Y. pestis выросших при 37 °С. Подобного не происходит у белых мышей.
2. Дефект Y. pestis по fra-генам и отсутствие фракции I обусловливают более выраженное снижение эффективности захвата бактерий, выращенных при 37 °С макрофагами морских сви-
нок, но не белых мышей и большую степень переваривания макрофагами морских свинок при всех условиях опыта, а макрофагами белых мышей — только в отношении 37°-культур.
3. Как в захвате, так и завершении фагоцитоза роль фракции более существенна в макрофагах морских свинок.
ВЛИЯНИЕ МОДИФИКАТОРОВ БИОЛОГИЧЕСКОГО ОТВЕТА ПРИРОДНОГО
ПРОИСХОЖДЕНИЯ НА ФУНКЦИОНАЛЬНУЮ АКТИВНОСТЬ МАКРОФАГОВ
(ОНКОЛОГИЧЕСКИЙ АСПЕКТ)
Несмотря на значительные успехи химиотерапии некоторых видов злокачественных новообразований, результаты применения противоопухолевых химиопрепаратов при наиболее распространенных локализациях рака остаются малоудовлетворительными. Становится все более очевидным, что одним из основных препятствий для успешной химиотерапии злокачественных опухолей является гетерогенность популяции неопластических клеток, которая выражается, в частности, в наличии в ней клонов клеток, резистентных к химиотерапевтиче-ским агентам. Более того, такая резистентность может относиться к целым классам препаратов, что может ограничивать эффективность и комплексной полихимиотерапии. Еще более осложняет положение генетическая нестабильность опухолевых клеток, которые, имея высокий уровень спонтанных мутаций, чрезвычайно легко подвергаются мутагенному воздействию химиопрепаратов и продуктов их метаболизма. Это в значительной мере усиливает гетерогенность опухолевой популяции, способствует генерации еще большего числа резистентных к химиотерапии клонов, усиливает их способность к метастизированию, рецидиву на фоне продолжающейся химиотерапии.
В конечном счете даже весьма радикальная (на 99,5 %) редукция опухолевой массы в процессе химиотерапии почти неизбежно приводит к возобновлению процесса за счет резистентных клонов — предшествовавших или возникших в процессе химиотерапии. Более того, такие клоны оказываются в далеко зашедшей стадии опухолевой прогрессии и, следовательно, более злокачественными.
В этих условиях вполне закономерными представляются поиски путей элиминации опухолевых клеток с так называемой множественной лекарственной устойчивостью с помощью других механизмов, в частности литического потенциала иммунокомпетентных клеток. Особый интерес в этом отношении представляют макрофаги. В отличие от других типов иммуноцитов их активность в меньшей степени подавляется в процессе интенсивной циторедуктивной терапии, они способны к эффективным противоопухолевым реакциям в соотношении эффектор/мишень, приближающемся к 1:1 и, инфильтрируя опухолевую строму, имеют достаточную возможность для контакта с опухолевой клеткой. Показана возможность активации цитолитического действия макрофагов с помощью различных модификаторов биологического ответа (МБО) после воздействия противоопухолевых химиопрепаратов, в то время как активность других эффекторных систем может быть существенно подавлена. Поэтому в настоящее время идет активная разработка методов адъювантной иммунотерапии с включением активаторов макрофагов. При этом предварительная оценка эффекта последних проводится in vitro и в основном по способности индуцировать цитолитическую и цитостатическую активность. По сохранению такой способности в процессе применения химиотерапевтических противоопухолевых препаратов оценивается и «совместимость» МБО с ними. Однако индукция цитотоксичности является только одной стороной активации макрофагов, под влиянием МБО происходят другие значительные изменения функциональной активности этих клеток, в частности усиливается продукция и секреция целого ряда ростовых факторов. В рамках такого подхода было изучено влияние БЦЖ и циклофосфамида на перитонеальные макрофаги мышей. Названные препараты выбраны как модельные в виду их достаточной изученности как индукторов противоопухолевой активности макрофагов in vitro и in vivo, а также достаточно широкого применения в клинической практике.
Известно, что цитотоксическая активность макрофагов in vitro достигает своего максимума к 48—72 ч культивирования, а затем быстро снижается. Была проведена оценка ростстимулирующей активности резидентных и БЦЖ-активированных макрофагов в процессе культивирования in vitro.
Установлено, что способность поддерживать рост опухолевых клеток прогрессивно снижается у резидентных макрофагов и нарастает у БЦЖ-активированных. Если в первые 3 дня прирост числа клеток на БЦЖ-активированных макрофагах достоверно ниже, чем на резидентных (что может быть объяснено цитотоксической активностью), то затем наблюдается противоположная ситуация.
Таким образом, если индуцированная БЦЖ-активация противоопухолевой активности макрофагов носит преходящий характер, то активация продукции ростовых факторов более устойчива во времени. Более того, при тестировании цитотоксической и ростстимулирующей активности макрофагов, выделяемых из перитонеальной полости мышей в различные сроки после введения БЦЖ, было выявлено, что цитотоксическая активность (цитолитическая и цитостатическая) максимальна на 10-й день. На 15-й и 20-й дни проявляется только цитолитическая, а цитостатическая активность исчезает. Ростстимулирующая активность максимальна на 15-й и 20-й дни. Следовательно, in vitro активация макрофагов БЦЖ приводит к транзиторной экспрессии противоопухолевой активности и длительной устойчивой ростстимулирующей активности.
С учетом этих данных становится понятным характер взаимодействия БЦЖ-активированных макрофагов и опухолевых клеток в процессе длительного ко-культивирования in vitro: в первые дни за счет цитотоксичности значительно снижается количество жизнеспособных клеток, одновременно цитостатические факторы тормозят их пролиферацию, но затем благодаря выделяемым ростовым факторам интенсивность пролиферации выживших опухолевых клеток значительно превышает таковую у резидентных макрофагов, в результате чего их общее количество достигает и даже превышает исходный уровень.
В ряде случаев при культивировании малых доз опухолевых клеток — до 10 на лунку (т. е. в соотношении эффектор/мишень 5000:1) — цитотоксической активности может быть достаточно для элиминации всей опухолевой популяции, однако в тех случаях, когда ростовая фракция превысит определенный порог цитотоксической активности, наблюдается интенсивный рост оставшихся опухолевых клеток. Именно это объясняет отсутствие достоверности результатов культивирования малых доз клеток, так как отклонения от средней величины отличались большей амплитудой.
Таким образом, способность макрофагов, активированных БЦЖ, контролировать рост опухолевых клеток in vitro ограничена и проявляется только в соотношениях эффектор/мишень, весьма далеких от реально возможного in vivo,— 500:1 — 5000:1. При этом противоопухолевая активность транзиторна, а опухольстимулирующая носит более длительный и устойчивый характер. Поэтому была предпринята попытка потенцировать противоопухолевую активность БЦЖ-активированных макрофагов путем воздействия на них циклофосфамидом. По данным литературы, этот противоопухолевый препарат является вполне «совместимым» с БЦЖ-агентом (т. е. стимулирует БЦЖ-индуцированную цитотоксичность) и, следовательно, может быть компонентом комбинированной химиоиммунотерапии на основе применения БЦЖ .
Циклофосфамид вводили мышам внутрибрюшинно в дозе 200 мг/кг, за 9 дней до того получивших также внутрибрюшинно 1 мг БЦЖ. На следующий день перитонеальные клетки выделяли и оценивали их цитотоксическую активность, способность поддерживать рост опухолевых клеток в субоптимальных концентрациях и влиять на рост автономно растущей опухолевой популяции в условиях ко-культивирования. Оказалось, что циклофосфамид самостоятельно индуцировал существенную цитолитическую и цитостатиче-скую активности, кроме того, достоверно усиливал БЦЖ-индуцированную цитотоксичность.. При этом в присутствии макрофагов, активированных комбинацией БЦЖ с циклофосфамидом, уровень пролиферации опухолевых клеток в зависимых от ростовых факторов концентрациях (102 клеток на лунку) был 2,9'104±3,25-103 и значительно превышал таковой при культивировании опухолевых клеток на БЦЖ-активированных макрофагах — 3,7-103±1,4-102, практически не отличаясь от их роста в присутствии нестимулированных макрофагов — 3,2-104±4,82-103.
Таким образом, несмотря на весьма высокий уровень цитотоксичности макрофагов, индуцированный их обработкой вслед за БЦЖ еще и циклофосфамидом, такие макрофаги теряли способность даже к ограниченному контролю ко-куль-тивируемой с ними популяции опухолевых клеток.
С учетом весьма значительной в этой серии экспериментов потери клеток под влиянием факторов цитотоксичности (в отдельных опытах цитолитическая активность достигала 70 %) и прироста клеток, сравнимого с таковым после ко-культивирования на резидентных макрофагах, можно считать, что совместное применение БЦЖ и циклофосфамида оказывает аддитивное действие на продукцию ростовых факторов макрофагами.
Таким образом, имеющиеся в литературе данные о совместимости БЦЖ и циклофосфамида, будучи совершенно справедливыми в отношении противоопухолевой активности активированных макрофагов, не отражают возможного конечного результата такого совмещения, явно нежелательного с клинической точки зрения. Следует отметить, что характер ответа макрофагов на активацию МБО in vivo имеет сходство с таковым in vitro. Как показано еще в первых работах по применению БЦЖ, иммунотерапия этим препаратом эффективна только в течение короткого срока, а затем происходит стимуляция опухолевого процесса, причем противоопухолевую активность макрофагов, достаточно быстро угасающую как in vitro, так и in vivo, как правило, не удается восстановить повторными введениями препарата, ее вызвавшего, и в случае успеха такая реактивация кратковременна.
Данные литературы достаточно однозначно указывают на отсутствие корреляции между цитотоксической активностью БЦЖ-активированных макрофагов in vitro и их влиянием на опухолевые клетки in.vivo. Если исходить из представленных нами данных, это становится вполне объяснимым: уничтожение in vitro даже большинства опухолевых клеток при последующем стимулировании роста оставшихся приводит к явному нивелированию эффекта цитолитического действия, особенно если учесть его относительную кратковременность по сравнению с ростстимулирующим действием. Кроме того, выявляемая in vitro цито-статистическая активность зависит от таких факторов, как аргиназа, истощение культуральной среды ввиду повышенного метаболизма активированных макрофагов, продукция токсических радикалов, атомарного кислорода и др. В условиях in vivo эти эффекты могут не проявляться в связи с притоком аргинина, других питательных веществ к клеткам, наличием антагонистов радикалов и т. д.
Как известно, при опухолевом процессе макрофаги способствуют развитию опухоли на «органном» уровне путем улучшения микроокружения (имеется в виду стимуляция ангиогенеза, формирование стромы опухоли, элиминация продуктов распада опухолевых клеток). Продуцируемые макрофагами иммуносупрессивные факторы, в частности простагландин Е2, способны инактивировать другие иммунологические механизмы рези-стентности к опухолевому росту. Такие факторы, как интерлейкин-1 (ИЛ-1), фактор некроза опухоли (ФНО), выделяемые активированными макрофагами, способны подавлять пролиферацию большей части известных линий опухолевых клеток, однако они являются и стимуляторами роста некоторых из них .
Учитывая высокую степень гетерогенности опухолевой популяции и усиление роста таковой под влиянием продуктов активированных макрофагов, нельзя исключить появления устойчивых и даже зависимых от ФНО и ИЛ-2 клонов. И если в относительно непродолжительных до времени сроках взаимодействия макрофагов и опухолевых клеток в условиях экспериментальных моделей такие эффекты не проявятся, то в реальных условиях вероятностью такого отбора пренебрегать нельзя. Это особенно актуально, если учитывать, что макрофаги практически неизбежно вовлекаются в реализацию любого иммунотерапевтического воздействия, поэтому продемонстрированные здесь негативные последствия их активации могут сказаться и на эффективности всей программы иммунотерапии, направленной изначально на другие эффекторы иммунной системы.
Таким образом, продукция макрофагами факторов, стимулирующих рост опухолевых клеток, является весьма существенным компонентом ответа этих клеток на МБО. Соответственно при оценке и отборе потенциальных МБО необходимо оценивать не только их способность к индукции противоопухолевых реакций, но и возможность экспрессии побочной ростстимулирующей активности. Только углубленное изучение этого вопроса., направленного на выявление факторов, стимулирующих рост опухолевых клеток, путей их биосинтеза в макрофагах и их регуляцию, может лечь в основу разработки методов селективного подавления нежелательных в онкологической ситуации ростстимулирующих свойств активированных МБО макрофагов при одновременной сохранности и активации их противоопухолевой активности.
ПЕРИТОНЕАЛЬНЫЕ МАКРОФАГИ КАК МОДЕЛЬ ДЛЯ ИЗУЧЕНИЯ АТЕРОГЕННОГО
ПОТЕНЦИАЛА СЫВОРОТКИ КРОВИ
Накопление липидов в гладкомышечных клетках (ГМК) и макрофагах интимы аорты является характерной чертой атеросклероза человека и экспериментальных животных. Было показано, что сыворотки крови больных ишемической болезнью сердца (ИБС) с ангиографи-чески подтвержденным коронарным атеросклерозом в отличие от сывороток крови здоровых лиц обладают способностью вызывать накопление липидов в культивируемых клетках интимы аорты человека. Это свойство было названо атерогенностью, поскольку накопление липидов сопровождалось другими атеросклеротическими проявлениями на клеточном уровне — усилением пролиферативной активности и синтеза внеклеточного матрикса. Однако связь между атерогенностью и атеросклерозом окончательно не выяснена.
Исследования по этой проблеме основаны на первичном культивировании субэндотелиальных клеток интимы аорты человека. Сложность работы обусловлена необходимостью постоянного обеспечения стерильным аутопсийным материалом, а также высокой стоимостью выделения и культивирования клеток.
Ранее было показано, что способностью аккумулировать внутриклеточно холестерин при культивировании с атерогенной сывороткой обладают ГМК аорты человека и мононуклеарные клетки периферической крови. Эти данные позволяют считать, что для определения атеро-генности сыворотки крови могут быть использованы не только субэндотелиальные клетки интимы аорты.
Целью работы было определение возможности использования легкодоступных перитонеальных макрофагов для определения атерогенности сыворотки крови.
Кровь для исследований бы взята у больных ИБС, подтвержденной при коронарной ангиографии, и здоровых доноров. ГМК были выделены из аорты мужчин, взятой в асептических условиях спустя 24 ч после внезапной смерти, ступившей от инфаркта миокарда. Человеческие перитонеальные макрофаги были выделены из асцитической жидкости больных недостаточностью кровообращения. Мышиные перитонеальные МФ получены от нестимулированных мышей.
Влияние сыворотки крови здоровых доноров и больных ИБС на уровень холестерина в клетках
Тип клеток |
Контроль, мкг |
Уровень холестерина в клетках, % контрольных величин |
|
на 1 мг белка |
здоровые доноры |
больные ИБС |
Реферат опубликован: 26/04/2005 (18081 прочтено)