Синтез белка

Страница: 6/7

Классификация аминокислот

Все встречающиеся в природе аминокислоты обладают общим свойством - амфотерностью, т.е. каждая аминокислота содержит как минимум одну кислотную и одну основную группу. Общий тип строения (-аминокислот может быть представлен в следующем виде:

Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой (-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все (-амино- и (-карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно- основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Аминокислоты классифицируют на основе химического строения радикалов, хотя были предложены и другие принципы. Различают ароматические и алифатические аминокислоты, а также аминокислоты, содержащие серу или гидроксильные группы. Часто классификация основана на природе заряда аминокислоты. Если радикал нейтральный (такие аминокислоты содержат только одну амино- и одну карбоксильную группу), то они называются нейтральными аминокислотами. Если же аминокислота содержит избыток амино- или карбоксильных групп, то она называется соответственно основной или кислой аминокислотой.

Современная рациональная классификация аминокислот основана на полярности радикалов, т.е. способности их к взаимодействию с водой. Она включает четыре класса аминокислот:

1) неполярные (гидрофобные)

2) полярные (гидрофильные) незаряженные

3) отрицательно заряженные

4) положительно заряженные при физиологических значениях pH

В представленной классификации аминокислот приведены наименования, структурные формулы, сокращенные обозначения и однобуквенные символы аминокислот, принятые в отечественной и иностранной литературе, а также значения изоэлектрической точки pI.

Перечисленные аминокислоты присутствуют в различных количественных соотношениях и последовательностях, в тысячах белков, хотя отдельные индивидуальные белки и не содержат полный набор всех этих аминокислот. Помимо наличия в большинстве природных белков 20 аминокислот, в некоторых белках обнаружены производные аминокислот (эти аминокилоты образуются после завершения синтеза белка в рибосоме клеток в результате постсинтетической химической модификациии): оксипролин, оксилизин, дийодтирозин, фосфосерин и фосфотреонин.

Первые две аминокислоты содержаться в белке соединительной ткани - коллагене, а дийодтирозин является основой структуры гормонов щитовидной железы. В мышечном белке миозине обнаружен также (-N-метиллизин.

Конкретные аминокислоты:

Аланин

Аланин, (-аминопропионовая кислота, ациклическая аминокислота, широко распространенная в живой природе. Молекулярная масса 89,09. (-аланин [CH3CH(NH2)COOH] входит в состав всех белков и встречается в организмах в свободном состоянии. Относится к числу заменяемых аминокислот, так как легко синтезируется в организме животных и человека из безазотистых предшественников и усвояемого азота. (-аланин [CH2(NH2)CH2COOH] в составе белков не встречается, но является продуктом промежуточного обмена аминокислот и входит в состав некоторых биологически активных соединений, например азотистых экстрактивных веществ скелетной мускулатуры - карнозина и анзерина, коэнзима аланина, а также одного из витаминов В - пантотеновой кислоты.

Аргинин

Аргинин, (-амино-(-гуанидинвалериановая кислота,

NH2

(

C-NH(CH2)3NH2CHCOOH

((

NH

диаминомонокарбоновая аминокислота, в молекуле которой, помимо аиногруппы, есть амидиновая группа (NH2-C=NH). Аргинин имеет основные свойства (изоэлектрическая точка при рН 10,76), образует бесцветные кристаллы, растворимые в воде. Молекулярная масса 174,3. Аргинин входит в состав почти всех растительных и животных белков (некоторые простейшие белки клеточных ядер спермиев рыб - протамины - содержат около 80% аргинина). В мышцах беспозвоночных животных содержится свободная аргининфосфорная кислота - продукт фосфорилирования аргинина. Под действием фермента аргиназы, а также при щелочном гидролизе аргинин распадается на аминокислоты орнитин и мочевину; эта реакция играет важную роль в образовании мочевины в печени млекопитающих.

Глицин

Глицин, аминоуксусная кислота, гликокол, простейшая алифатическая аминокислота H2NCH2СOOH, бесцветные кристаллы, tпл. 232-236(С (с разложением), плотность 1,595 г(см (15(С). В 100 г воды при 25(С растворяется

25 г глицина. В абсолютном спирте и эфире нерастворим. С кислотами и основаниями образует соли, с многими катионами- комплексные соединения. Внутренние соли N- триалкилзамещенного глицина называют бетаинами. Глицин входит в состав большинства растительных и животных белков. Получают глицин гидролизом желатины или фиброина шелка. Глицин может быть синтезирован из монохлоруксусной

кислоты и аммиака. Биологическое значение глицина обусловлено участием его в построении белков и биосинтезе многих физиологических активных соединений (глутатиона, гиппуровой и гликохолевой кислот, порфиринов). Глицин применяют для приготовления буферных растворов, для синтеза гиппуровой и аминогиппуровой кислот и в пептидном синтезе.

Гистидин

Гистидин, (-амино-(-имидазолилпропионовая кислота(

N--C--CH2--CH--COOH

HC CH NH2

NH

аминокислота, обладающая основными свойствами, незаменимая для многих животных. Организм человека способен к ограниченному синтезу гистидина. Входит в состав активных центров многих ферментов, в частности рибонуклеазы, транскетолазы. Начальная стадия ферментативного разрушения гистидина в организме - отщеплениеаммиака с образованием уроканиновой кислоты, выводящейся с мочой. Реакция дезаминирования гистидина необратима, катализирует ее фермент гистидин-аммиак-лиаза (гистидин-(-дезаминаза), обнаруженный в печени животных и у бактерий. Недостаток гистидина приводит ко многим нарушениям обмена веществ, т.ч. к торможению синтеза гемоглобина. Гистидин - предшественник специфических дипептидов скелетной мускулатуры - карнозина и анзерина. Декарбоксилирование гистидина ведет к образованию биологически активного амина - гистамина. Этот процесс катализирует гистидин-декарбоксилаза-фермент, относящийся к классу лиаз. Фермент действует только на L-изометр (природную форму) гистидина. Реакция обратимо тормозится ингибиторами дыхания - цианидом, гидроксиламином, семикарбазидом.

Аспарагиновая кислота

Аспарагиновая кислота, аминоянтарная кислота, COOHCH2CHNH2COOH, одна из дикарбоновых аминокислот, имеет слабокислые свойства ( изоэлектрическая точка при рН 2,77), молекулярная масса 133,10. Кристаллизуется в виде ромбических призм, плохо растворимых в холодной воде. Аспарагиновая кислота в значительных количествах входит в состав белков животных и растений, играет важную роль в обмене азотистых веществ. Участвует в образовании пиримидиновых оснований, синтезе мочевины. Наряду с глутаминовой кислотой играет важнейшую роль в реакциях переаминирования. Эта кислота может быть синтезирована в животном организме. Продуктом амидирования аспарагиновой кислоты является аспарагин.

Глутаминовая кислота

Глутаминовая кислота, глютаминовая, или аминоглутаровая кислота, аминокислота COOH(CH2=CH2=CH(NH2)=COOH. Кристаллы, растворимые в воде, температура плавления 202(С. Входит в состав белков и ряда важных низкомолекулярных соединений (например, глутатиона, фолиевой кислоты). Природная форма представляет D(+) изомер.

Оксипролин

Оксипролин, 4-оксипирролидин-2-карбоновая кислота. Оксипролин - гетероциклическая аминокислота (по химическому строению- иминокислота). Впервые выделена в 1902 году Э. Фишером из гидролизата желатины. Благодаря наличию двух асимметричных атомов углерода, оксипролин имеет 4 оптическиактивные формы (L- и D-О. и алло-L- и алло-D-О.), а также 2 рацемата. Природный L-О. -специфическая составная часть белков соединительной ткани - коллагена и эластина (до 13%), а также некоторых растительных белков; в других белках отсутствует или содержится в небольших количествах. Алло - L-О. обнаружен в свободном состоянии в сандаловом дереве, входит в состав ядовитых пептидов бледной поганки. В живых клетках L-О. образуется гидроксилированием связанного в белках пролина (кислородный атом гидроксила включается в оксипролин путем фиксации атмосферного О2). Один из продуктов превращения L-О. в организме - глутаминовая кислота.

Норлейцин

Норлейцин, CH3(CH2)3CH(NH2)COOH, (-аминокапроновая кислота, органическое вещество из класса аминокислот. В природных объектах не встречается, физиологической активностью не обладает. Имеет значение как модельное вещество (наряду с норвалином) при разработке методов синтеза аминокислот.

Лейцин

Лейцин (от греческого leukos - белый), аминоизокапроновая кислота, моноаминомонокарбоновая аминокислота; бесцветные кристаллы с tпл 293-293(С (с разложением), плохо растворимые в холодной воде, молекулярная масса 131,18. Лейцин выделен в 1820 году из мышечной ткани. Природный L-лейцин входит в состав всех белков животных и растений, является незаменимой аминокислотой, так как в организме человека и животных не синтезируется углеродный скелет его предшественника - (-кетоизовалериановой кислоты. Отсутствие лейцина в пище приводит к отрицательному балансу азота и прекращению роста у детей. Суточная потребность в лейцине у взрослых - 31мг/кг веса, у младенцев - 425мг/кг.Один из продуктов распада лейцина в организме - (-окси-(-метилглутаровая кислота (в виде ацилкофермента А), является важным промежуточным соединением при биосинтезе холестерина и других стероидов. Лейцин вместе с глутаминовой кислотой, метионином и другими аминокислотами применяется для лечения болезней печени, анемий, а также при некоторых психических заболеваниях.

Реферат опубликован: 15/06/2005 (15850 прочтено)