История изучения капиллярных и поверхностных сил

Страница: 5/7

(35)

Следует отметить, что уравнение (35) является лишь обоб­щением формы уравне­ния адсорбции Гиббса и физически со­вершенно эквивалентно уравнению (34). Более того, можно сказать, что, уступая уравнению (34) в простоте, урав­нение (35) и услож­няет интерпретацию величины s, поскольку утрачи­вается аналогия с натяжением упру­гой мембраны. Строго говоря, термин «поверхностное натяжение» применим только к поверхности натяжения.

Другой обобщенной и также физически эквивалентной формой является запись уравнения адсорбции Гиббса для слоя конечной толщины [24]

Ads= (36)

где Va и Vb — части объема Vs поверхностного слоя, разде­ленные поверхностью натя­жения.

В случае плоской поверхности уравнение (17) принимает вид [4, 17, 18]

(37)

и соответствует уравнению (32).

Выше мы указывали, что уравнение (34) было получено Гиббсом для гра­ницы флюидных фаз. Соответствующее уравне­ние для плоской твердой поверх­ности в изо­тропном состоянии было выведено Эрикссоном [30]

(38)

где

g — механический аналог поверхностного натяжения жид­кости (истинное поверхно­стное натяжение твердого тела);

s — термодинамический аналог поверхностного натяжения жидкости (условное по­верхностное натяжение твер­дого тела).

В общем случае анизотропной поверхности твердого тела уравнение ад­сорбции принимает вид [26, 27]

: (39)

где

— тензор избыточных поверхностных напряжений;

— единичный тензор;

— тензор поверхностной деформации; символ : озна­чает скалярное произ­ведение тензоров.

В уравнении (39) суммирование производится по всем под­вижным компо­нентам. Что касается неподвижных компонен­тов, образующих решетку твердого тела, то их хи­мические потенциалы не фигурируют в уравнении (39). Гиббс во­обще не вводил поня­тия химический потенциал неподвижного компо­нента. Его можно определить лишь ус­ловно и отдельно для каждого направления разреза твердого тела как химический по­тенциал в равновесной флюидной фазе, кон­тактирующей с твердым телом по данному разрезу. Определенный таким об­ра­зом химический потенциал неподвижного компо­нента mi' зависит в каждой точке тела от направления нормали к мыс­ленной поверх­ности разреза.

Кроме того, даже в состоянии истинного равновесия вели­чина mi не будет одина­ковой для всех точек разреза и поэтому при переходе к избыточным вели­чинам для межфазной поверх­ности приходится брать избыток от произведения химического по­тенциала на массу неподвижного компонента. Для каждого на­правления на межфаз­ной поверхности можно определить величину

(40)

причем существует соотношение [31, 32]

(41)

где gn — натяжение на поверхности в направлении .

Подстановка (41) в (39) приводит к уравнению [31, 32]

: (42)

которое также является обобщением уравнения адсорбции Гиббса на случай твердой поверхности, но сформулировано в терминах избыточного поверхност­ного напряжения. Для жидкой поверхности , и уравнения (39) и (42) переходят в уравнение адсорбции Гиббса.

При применении уравнения адсорбции Гиббса к поверх­ности жидкого электрода в нем появляется дополнительный член, связанный с изменением электрического потен­циала. Можно сказать, что для изотермо-изобарических условий этот член был получен самим Гиббсом, поскольку он дал термоди­на­мический вывод уравнения Липпмана. В дальнейшем этот вопрос многократно обсуждался при исследовании электрокапилляр­ных явлений (см., например, [33 – 35]). Строгий вы­вод уравнения адсорбции Гиббса для плоского поверхност­ного слоя электрода был дан Парсонсом [36]. Соответствующую теорию для искрив­ленного слоя можно найти в [25, 14].

К весьма сложным разделам термодинамики поверхностных явлений отно­сится анализ искривленных поверхностей во внешних полях. Гиббсом было на­чато рассмот­рение поверх­ностных явлений в гравитационном поле. Что касается элек­трического поля, то результаты были получены значительно позднее. Труд­ность рассмотрения здесь сильно зависит от того, являются ли соприкасаю­щиеся фазы проводниками или ди­электриками, Задача для соприкасающихся проводников ре­шается сравнительно про­сто [37], для диэлектриков — зна­чи­тельно сложнее [38].

Важным моментом в развитии термодинамики поверхност­ных явлений было обобщение уравнения адсорбции Гиббса на случай отсутствия адсорбци­онного равнове­сия. Здесь нужно отметить прежде всего работы Дефэя [39, 40], в которых было вве­дено понятие вторичных химических потенциалов ei отра­жающих зависимость поверх­ностного натяжения от состояния объемных фаз a и b :

(43)

В уравнении (43) предполагается, что термическое и меха­ническое равно­весие ус­тановилось, а диффузионное еще не достигнуто.

Процесс установления адсорбционного равновесия включает трансляцион­ное и вращательное движение молекул, в част­ности, ориентацию несферических молекул в поверхностном слое. Если ориентация происходит гораздо медленнее трансля­ционно-диффузионного процесса, то можно представить слу­чай, когда вся неравновесность системы обусловлена процессом ориентации молекул (например, диполей) в поверхно­стном слое. Для такого случая было предложено обобщение уравне­ния Гиббса [37]

(44)

где

— среднее значение составляющей по оси x дипольного момента мо­лекул i‑го компо­нента в фазе a;

— среднее значение квадрата той же ве­личины;

и — соответствующие сродства; суммирова­ние по x и a означает сумми­рование по всем составляющим дипольного момента и по всем фазам и тонким эле­ментарным слоям внутри поверх­ностного слоя, рассматриваемым как однородные области.

Следует отметить, что в основе вывода уравнения (44) лежит весьма ус­ловное предположение о независимости транс­ляционных и вращательных со­ставляющих ад­сорбционно-диф­фузионного процесса.

Развитие новых направлений в

термодинамике поверхностных явлений

Термодинамика тонких пленок

Гиббс в теории капиллярности ограничился рассмотрением только тол­стых пле­нок, в которых можно пренебречь взаимо­влиянием поверхностных слоев на противопо­ложных сторонах пленки. Тонкая пленка принципиально от­личается от толстой тем что ее поверхностные слои нельзя рассматривать неза­висимо друг от друга. Фактически в тонкой пленке уже нельзя выделить объем­ную фазу и окружающие ее поверхностные слои, а необходимо рассматривать пленку в целом. Важной характеристикой, отличаю­щей тонкую пленку от тол­стой, является расклинивающее давление; в опытах оно про­является в том, что при переходе от толстой к тонкой пленке требуется изменение внешнего давле­ния. Понятие расклинивающего дав­ления было введено Дерягиным [42], кото­рому принадлежат и первые измерения этой величины.

Существует несколько эквивалентных определений раскли­нивающего дав­ления плоской тонкой пленки. Прежде всего расклинивающее давление П можно определить как разность между значениями внешнего давления Pa на тонкую и толстую пленку

(45)

где h — толщина тонкой пленки.

Если тонкая пленка образовалась из фазы g и продолжает находиться с ней в рав­новесии (например, при прилипании пузырька к твердой поверхности: фаза a — газ, фаза g — жид­кость), то расклинивающее давление можно определить как:

(46)

Наконец, поскольку для плоской пленки внешнее давление всегда равно нормаль­ной составляющей тензора давления внутри пленки, можно дать опре­деление

(47)

и сформулировать его следующим образом:

расклинивающее давление есть разность между нормальным давлением внутри пленки (или внешним давлением) и давле­нием в объемной фазе той же природы при тех же значениях температуры и химических потенциалов, что и в пленке.

Определение (46) впервые использовали в эксперименталь­ных исследова­ниях рас­клинивающего давления [42 – 45], а оп­ределение (47) — для расчетов [46].

Реферат опубликован: 15/04/2005 (15685 прочтено)