Страница: 6/7
Как величина термодинамическая, расклинивающее давление может быть связано с другими термодинамическими параметрами, и относящиеся к этой области соотношения образуют термодинамику тонких пленок как особый раздел теории капиллярности. Разработка этого раздела содержится в целом ряде работ (см., например, [47 – 57]). Последовательное изложение термодинамики тонких пленок дано в монографии [25, стр. 259 – 310]. Термодинамика тонких пленок нашла важное приложение в теориях электрокапиллярности, адсорбции и хроматографии (ссылки на конкретные работы можно найти в [14]).
Здесь мы продемонстрируем в качестве примера подход к термодинамике тонких пленок, связанный с введением двух разделяющих поверхностей. Представим, что пленка образовалась путем утоньшения слоя фазы g между фазами a и b . Тогда, выбрав положение двух разделяющих поверхностей и взяв избытки со стороны фаз a и b , мы придем к уравнению (32) для слоя конечной толщины, которое в данном случае имеет вид
gdA (48)
где
g — натяжение пленки;
h — расстояние между разделяющими поверхностями.
Теперь мы сделаем еще один шаг [66]: возьмем избыток по отношению к фазе g, то есть вычтем из (48) уравнение
(49)
Используя определение (53), получаем
gdA (50)
где , и — совместные для обеих поверхностей избытки энергии, энтропии и массы i-го компонента.
Уравнение (50) справедливо при любом положении разделяющих поверхностей. Оно играет роль основного фундаментального уравнения тонкой пленки, из которого могут быть получены многие другие термодинамические соотношения. В частности, из (50) получаем выражение
(51)
которое также может рассматриваться как определение расклинивающего давления. Из (50) следует еще два фундаментальных уравнения:
gA (52)
(53)
Уравнение (53) является аналогом уравнения адсорбции Гиббса (в терминах абсолютной адсорбции). Как и уравнение адсорбции Гиббса, оно не является самостоятельным термодинамическим соотношением и для получения каких-либо физических зависимостей должно рассматриваться совместно с фундаментальными уравнениями для объемных фаз.
Отметим, что приведенные определения расклинивающего давления относятся только к плоской пленке. При переходе к случаю искривленной пленки возникают следующие осложнения: определения (45) – (47) перестают быть эквивалентными; каждое из этих определений утрачивает свою однозначность. Так, если пользоваться определениями (45) и (46), то для искривленной пленки будут существовать два расклинивающих давления, поскольку давления Рa и Рb по обеим сторонам пленки будут различными. Определением (47) воспользоваться еще труднее, так как в случае искривленной пленки величина Рn является функцией пространственных координат.
Для описания дальнодействующих поверхностных сил в искривленных пленках можно использовать более фундаментальное понятие работы смачивания, введенное в [58]. Для плоских пленок работа смачивания просто выражается, если известна изотерма расклинивающего давления (т.е. зависимость P(h) при данной температуре). Для искривленных же пленок необходимо делать какие-то другие предположения о виде зависимости работы смачивания от толщины пленки.
Таким образом, даже задача адекватного описания дальнодействующих поверхностных сил на сегодняшний день остается нерешенной.
В целом можно отметить, что термодинамический подход Гиббса к описанию капиллярности оказался очень плодотворным. По сей день теория Гиббса остается весьма полезной как в чисто теоретических исследованиях, так и в прикладных задачах. Значительные успехи достигнуты также в термодинамике адсорбции, смачивания, нуклеации, электродных процессов и в других областях.
Заключение
Как видно из приведенного исторического обзора, капиллярные явления изучаются уже почти триста лет. За это время довольно сильно изменились способы описания капиллярных и поверхностных сил. Однако, интересно отметить, что практически с самых первых работ по теории капиллярных явлений, люди совершенно правильно относили их к макроскопическим проявлениям сил, действующих между частицами в веществе. С развитием представлений об этих силах менялось и понимание их роли в тех или капиллярных явлениях.
Первые оценки радиуса действия межмолекулярных сил были грубыми и сильно завышенными. Соответственно, первые теории капиллярности были грубыми механистическими теориями среднего поля.
Теория Гиббса дала совершенно новый инструмент исследования поверхностных явлений. С использованием мощного и универсального аппарата термодинамики удалось дать более строгие определения понятиям границы раздела фаз, толщины пленки и т.д. Кроме того, формула Лапласа для разности давлений в фазах вблизи искривленной поверхности их раздела была получена в теории Гиббса без всяких дополнительных предположений о радиусе действия межмолекулярных сил. Подход, развитый Гиббсом, и сегодня не теряет своей актуальности в силу своей универсальности и удивительной широты охвата явлений.
В настоящее время исследования в области капиллярных и поверхностных сил продолжаются, что обусловлено как их важностью в различных областях науки, так и широким спектром практических приложений.
Литература.
[D&L2] © Hauksbee F. Physico-Mechanical Experiments, London, 1709, pp. 139–169; and Phil. Trans., 1711 and 1712.
Maxwell J.C. Capillary Action. The Encyclopaedia Britannica, 11th edition, Cambrige: at the University Press, 1910, vol. 5, p. 256.
© Jurin J. Phil. Trans., 1718, p. 739, and 1719, p. 1083.
© Clairault A.C. Thйorie de la figure de la terre, Paris, 1808, pp. 105, 128.
© von Segner J.A. Comment. Soc. Reg. Gцtting. i. (1751), p. 301.
© Leslie J. Phil. Mag., 1802, vol. xiv p. 193.
© Young T. Cohesion of Fluids, Phil. Trans., 1805, p. 65.
¨ Laplace P.S. Traitй de Mйcanique Cйleste; Supplйment au dixiйme livre, Sur l’Action. Capillaire (1807); in: Oeuvres complйtes de Laplace, v. 4. Gauthiers-Villars, Paris, 1880, p. 349, 419.
Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М.: Мир, 1986.
¨ Lord Rayleigh, Phil. Mag. 30, 285, 456 (1890); Scentific Papers, v. 3. Cambrige University Press, 1902, p. 397.
¨ Duprй A. Thйorie mйcanique de la Chaleur. Gauthier-Villars, Paris, 1869, p. 152.
§ Gibbs J.W. Trans. Conn. Acad., 1878, v.3, p. 343; Гиббс Дж. В. Термодинамические работы. М. – Л., Гостехиздат, 1950.
§ Gibbs J.W. Prос. Amer. Acad., 1881, v. 16, p. 420.
Русанов А.И. 100 лет теории капиллярности Гиббса. В сборнике: Современная теория капиллярности. Л.: Химия, 1980.
§ Wilson Е.В. A letter from lord Rayleigh to J. Willard Gibbs and his reply. Proc. Nat. Acad. USA, 1945, v. 31, p. 34.
§ Guggenheim Е. A. Trans. Faraday Soc., 1940, v. 36, p. 397.
§ Rice J. A. Commentary of the Scientific Writings of J.W. Gibbs. V. I/F. G. Donnan and A. Haas, eds. New Haven, 1936.
§ Kondo S. J. Chem. Phys., 1956, v. 25, p. 662.
Оно С., Кондо С. Молекулярная теория поверхностного натяжения в жидкостях. М., ИЛ, 1963.
§ Ван-дер-Ваальс И. Д., Констамм Ф. Курс термостатики. т. 1. ОНТИ, 1936.
Реферат опубликован: 15/04/2005 (15723 прочтено)